On Convergence to Stationary Distributions for Solutions of Nonlinear Fokker–Planck–Kolmogorov Equations

被引:1
|
作者
Bogachev V.I. [1 ,2 ]
Röckner M. [3 ]
Shaposhnikov S.V. [1 ,2 ]
机构
[1] Moscow State University, Moscow
[2] National University Higher School of Economics, 20, Myasnitskaya St., Moscow
[3] Universität Bielefeld, Bielefeld
关键词
D O I
10.1007/s10958-019-04467-8
中图分类号
学科分类号
摘要
We obtain conditions under which solutions to a nonlinear Fokker–Planck–Kolmogorov equation with the diffusion matrix depending on the solution converge to the stationary solution. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:69 / 84
页数:15
相关论文
共 50 条
  • [1] Convergence to Stationary Measures in Nonlinear Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2018, 98 : 452 - 457
  • [2] Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures
    Bogachev, Vladimir, I
    Roeckner, Michael
    Shaposhnikov, Stanislav, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) : 3681 - 3713
  • [3] Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 452 - 457
  • [4] DISTANCES BETWEEN STATIONARY DISTRIBUTIONS OF DIFFUSIONS AND SOLVABILITY OF NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (01) : 12 - 34
  • [5] Stationary Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir, I
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 3 - 24
  • [6] DIFFERENTIABILITY OF SOLUTIONS OF STATIONARY FOKKER PLANCK KOLMOGOROV EQUATIONS WITH RESPECT TO A PARAMETER
    Bogachev, Vladimir I.
    Shaposhnikov, Stanislav V.
    Veretennikov, Alexander Yu.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3519 - 3543
  • [7] Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations
    V. I. Bogachev
    A. V. Shaposhnikov
    S. V. Shaposhnikov
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [8] Nonlinear Fokker–Planck–Kolmogorov Equations in Hilbert Spaces
    Manita O.A.
    Journal of Mathematical Sciences, 2016, 216 (1) : 120 - 135
  • [9] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [10] Integrability and continuity of solutions to Fokker–Planck–Kolmogorov equations
    V. I. Bogachev
    S. V. Shaposhnikov
    Doklady Mathematics, 2017, 96 : 583 - 586