Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条
  • [31] Bicyclic graphs with the second up to seventh largest Wiener indices
    Tan, Shang-wang
    Wang, Dong-fang
    ARS COMBINATORIA, 2017, 134 : 3 - 27
  • [32] The (n,n)-graphs with the first three extremal Wiener indices
    Zikai Tang
    Hanyuan Deng
    Journal of Mathematical Chemistry, 2008, 43 : 60 - 74
  • [33] NOTE ON THE UNICYCLIC GRAPHS WITH THE FIRST THREE LARGEST WIENER INDICES
    Glogic, E.
    Pavlovic, L. J.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 533 - 537
  • [34] Wiener Index of k-Connected Graphs
    Qin, Xiang
    Zhao, Yanhua
    Wu, Baoyindureng
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (04)
  • [35] Wiener, hyper-Wiener, detour and hyper-detour indices of bridge and chain graphs
    Mansour, Toufik
    Schork, Matthias
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) : 72 - 98
  • [36] Wiener, hyper-Wiener, detour and hyper-detour indices of bridge and chain graphs
    Toufik Mansour
    Matthias Schork
    Journal of Mathematical Chemistry, 2010, 47 : 72 - 98
  • [37] The behavior of Wiener indices and polynomials of graphs under five graph decorations
    Yan, Weigen
    Yang, Bo-Yin
    Yeh, Yeong-Nan
    APPLIED MATHEMATICS LETTERS, 2007, 20 (03) : 290 - 295
  • [38] Corrigendum on Wiener index, Zagreb Indices and Harary index of Eulerian graphs
    Cambie, Stijn
    DISCRETE APPLIED MATHEMATICS, 2024, 347 : 139 - 142
  • [39] Graphs with the second and third maximum Wiener indices over the 2-vertex connected graphs
    Bessy, Stephane
    Dross, Francois
    Knor, Martin
    Skrekovski, Riste
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 195 - 200
  • [40] On the maximal Wiener index and related questions
    Sills, Andrew V.
    Wang, Hua
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) : 1615 - 1623