Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条
  • [21] Wiener Type Indices of Some Composite Graphs
    Sharmiladevi, G.
    Kaladevi, V.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [22] Computing Wiener and hyper-Wiener indices of unitary Cayley graphs
    Loghman, Amir
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 3 (02): : 121 - 125
  • [23] WIENER AND VERTEX PI INDICES OF THE STRONG PRODUCT OF GRAPHS
    Pattabiraman, K.
    Paulraja, P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 749 - 769
  • [24] Wiener and vertex PI indices of Kronecker products of graphs
    Hoji, Marhaba
    Luo, Zhaoyang
    Vumar, Elkin
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (16) : 1848 - 1855
  • [25] ON A RELATION BETWEEN SZEGED AND WIENER INDICES OF BIPARTITE GRAPHS
    Chen, L.
    Li, X.
    Liu, M.
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (04) : 43 - 49
  • [26] Reverse Wiener Indices of Graphs of Exactly Two Cycles
    Luo, Wei
    Zhou, Bo
    Trinajstic, Nenad
    Du, Zhibin
    UTILITAS MATHEMATICA, 2012, 88 : 189 - 202
  • [27] The Wiener-type indices of the corona of two graphs
    Bian, Hong
    Ma, Xiaoling
    Vumar, Elkin
    Yu, Haizheng
    ARS COMBINATORIA, 2012, 107 : 193 - 199
  • [28] RELATIONS BETWEEN ENERGY OF GRAPHS AND WIENER, HARARY INDICES
    Ulker, Alper
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (03) : 279 - 286
  • [29] THE HYPER-WIENER AND MODIFIED HYPER-WIENER INDICES OF GRAPHS WITH AN APPLICATION ON FULLERENES
    Firouzian, Siamak
    Faghani, Morteza
    Koorepazan-Moftakhar, Fatemeh
    Ashrafi, Ali Reza
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2014, 59 (04): : 163 - 170
  • [30] The (n,n)-graphs with the first three extremal Wiener indices
    Tang, Zikai
    Deng, Hanyuan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) : 60 - 74