机构:Penn State University,Department of Mathematics
Allan Bickle
Zhongyuan Che
论文数: 0引用数: 0
h-index: 0
机构:Penn State University,Department of Mathematics
Zhongyuan Che
机构:
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源:
Graphs and Combinatorics
|
2021年
/
37卷
关键词:
-Tree;
Maximal ;
-degenerate graph;
Wiener index;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Du, Zhibin
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China