Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条
  • [1] Wiener Indices of Maximal k-Degenerate Graphs
    Bickle, Allan
    Che, Zhongyuan
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 581 - 589
  • [2] List star edge coloring of k-degenerate graphs
    Han, Miaomiao
    Li, Jiaao
    Luo, Rong
    Miao, Zhengke
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1838 - 1848
  • [3] The Relaxed Edge-Coloring Game and k-Degenerate Graphs
    Charles Dunn
    David Morawski
    Jennifer Firkins Nordstrom
    Order, 2015, 32 : 347 - 361
  • [4] An upper bound on Wiener Indices of maximal planar graphs
    Che, Zhongyuan
    Collins, Karen L.
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 76 - 86
  • [5] WEIGHTED-EDGE-COLORING OF k-DEGENERATE GRAPHS AND BIN-PACKING
    Huc, Florian
    JOURNAL OF INTERCONNECTION NETWORKS, 2011, 12 (1-2) : 109 - 124
  • [6] On Wiener and multiplicative Wiener indices of graphs
    Das, Kinkar Ch.
    Gutman, Ivan
    DISCRETE APPLIED MATHEMATICS, 2016, 206 : 9 - 14
  • [7] THE WIENER INDEX OF MAXIMAL OUTERPLANE GRAPHS
    Nosov, Y. L.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2014, 26 (04): : 112 - +
  • [8] The nine smallest hyper-Wiener indices of trees and the eight smallest hyper-Wiener (Wiener) indices of unicyclic graphs
    Liu, Muhuo
    Liu, Bolian
    UTILITAS MATHEMATICA, 2014, 95 : 129 - 139
  • [9] Wiener indices of trees and monocyclic graphs with given bipartition
    Du, Zhibin
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (06) : 1598 - 1605
  • [10] On the Reverse Wiener Indices of Unicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (02) : 293 - 306