On the negative case of the Singular Yamabe Problem

被引:0
作者
David L. Finn
机构
[1] Rose-Hulman Institute of Technology,Department of Mathematics
关键词
58G30; 53C21; 35J60; 35B40; conformai deformation; scalar curvature; singular solutions to semilinear elliptic equations; tangent cones;
D O I
10.1007/BF02923089
中图分类号
学科分类号
摘要
Let (M, g) be a compact Riemannian manifold of dimension n ≥3, and let Γ be a nonempty closed subset of M. The negative case of the Singular Yamabe Problem concerns the existence and behavior of a complete metric g on M∖Γ that has constant negative scalar curvature and is pointwise conformally related to the smooth metric g. Previous results have shown that when Γ is a smooth submanifold (with or without boundary) of dimension d, there exists such a metric if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d > \frac{{n - 2}}{2}$$ \end{document}. In this paper, we consider a more general class of closed sets and show the existence of a complete conformai metric ĝ with constant negative scalar curvature which depends on the dimension of the tangent cone to Γ at every point. Specifically, provided Γ admits a nice tangent cone at p, we show that when the dimension of the tangent cone to Γ at p is less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{n - 2}}{2}$$ \end{document} then there cannot exist a negative Singular Yamabe metric ĝ on M∖Γ.
引用
收藏
相关论文
共 32 条
[1]  
Aviles P.(1982)A study of the singularities of solutions of a class of nonlinear elliptic partial differential equations Comm. PDE 7 609-643
[2]  
Aviles P.(1988)Conformai deformation to constant negative scalar curvature in complete Riemannian manifolds J. Biff. Geom. 27 225-238
[3]  
McOwen R.(1988)Complete conformai metrics with negative scalar curvature in compact Riemannian manifolds Duke Math. J. 56 395-397
[4]  
Aviles P.(1984)Singularités éliminables pour des equations semi-linéaires Ann. Inst. Fourier Grenoble 34 185-206
[5]  
McOwen R.(1958)An extension of E. Hopf's maximum principle with an application to Riemannian geometry Duke Math. J. 25 45-56
[6]  
Baras P.(1975)Differential equations on Riemannian manifolds and their geometric applications Comm. Pure. Applied. Math. XXVIII 333-355
[7]  
Pierre M.(1994)Positive solutions of Δ Indiana Univ. Math. J. 43 1359-1397
[8]  
Calabi E.(1993)u = Indiana Univ. Math. J. 42 1487-1523
[9]  
Cheng S.Y.(1987) + Bull. Am. Math. Soc. 17 37-91
[10]  
Yau S.T.(1991) singular at submanifolds with boundary Indiana Univ. Math. J. 40 1227-1299