Linear series on k-gonal curves

被引:0
作者
Ballico E. [1 ]
Fontanari C. [2 ]
机构
[1] Dept. of Mathematics, University of Trento
[2] Scuola Normale Superiore, 56126 Pisa
来源
Annali dell’Università di Ferrara | 2001年 / 47卷 / 1期
关键词
Global Section; Linear Series; Smooth Case; Arithmetic Genus; Free Sheaf;
D O I
10.1007/BF02838171
中图分类号
学科分类号
摘要
Here we prove the following result. Theorem 1.1. Let X be an integral projective curve of arithmetic genus g and k≧ ≧4 an integer. Assume the existence of L ∈ Pick(X) with h0(X, L)=2 and L spanned. Fix a rank 1 torsion free sheaf M on X with h0(X,M)=r+1≧2, h1(X, M)≧2 and M spanned by its global sections. Set d:=deg(M) and s:=max {n≧0:h0 (X, M ⊗(L*)⊗n)>0}. Then one of the following cases occur: (a) M ≅ L⊗n;(b)M is the subsheaf of ωX⊗(L*)⊗t, t:=g-d+r-1, spanned by H0(X, ωX⊗(L*)⊗t); (c)there is a rank 1 torsion free sheaf F on X with 1≤h0(X, F)≤k-2 such that M≅L⊗s⊗F. Moreover, if we fix an integer m with 2≤m≤k-2 and assume r≠(s+1)k-(ns+n+1) per every 2≤n≤m, we have h0(X, F)≤k-m-1. We find also other upper bounds on h0 (X, F). © 2001 Università degli Studi di Ferrara.
引用
收藏
页码:1 / 8
页数:7
相关论文
共 12 条
[1]  
Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of algebraic curves, I, Grund. der Math. Wiss., 267, (1985)
[2]  
Altman A., Kleiman S., Introduction to Grothendieck Duality Theory, Lect. Notes in Math., 146, (1970)
[3]  
Ballico E., A remark on linear series on general k-gonal curves, Boll. U.M.I., 3 A, 7, pp. 195-197, (1989)
[4]  
Ballico E., Trigonal Gorenstein curves and special linear systems, Israel J. Math., 119, pp. 143-155, (2000)
[5]  
Coppens M., Free linear systems on integral Gorenstein curves, Journal of Algebra, 145, pp. 209-218, (1992)
[6]  
Coppens M., Keem C., Martens G., The primitive lenght of a general k-gonal curve, Indag. Math., 2, pp. 145-159, (1994)
[7]  
Coppens M., Martens G., Linear series on 4-gonal curves, Math. Nachr., 213, pp. 35-55, (2000)
[8]  
Coppens M., Martens G., Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg, 69, pp. 347-361, (1999)
[9]  
Eisenbud D., Linear sections of determinantal varieties, Am. J. Math., 110, pp. 541-575, (1988)
[10]  
Hartshorne R., Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ., 26, pp. 375-386, (1986)