Benchmarking AutoML frameworks for disease prediction using medical claims

被引:0
作者
Roland Albert A. Romero
Mariefel Nicole Y. Deypalan
Suchit Mehrotra
John Titus Jungao
Natalie E. Sheils
Elisabetta Manduchi
Jason H. Moore
机构
[1] OptumLabs,
[2] Department of Computational Biomedicine,undefined
[3] Cedars-Sinai Medical Center,undefined
来源
BioData Mining | / 15卷
关键词
Automated machine learning; AutoML; Machine learning; Healthcare; Medical claims; Class imbalance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 57 条
  • [1] Luo G(2017)Automating construction of machine learning models with clinical big data: Proposal rationale and methods JMIR Res Protoc 6 175-28
  • [2] Stone BL(2020)Machine-learning-based prediction models for high-need high-cost patients using nationwide clinical and claims data NPJ Dig Med 3 148-78
  • [3] Johnson MD(2013)Leveraging big data analytics to reduce healthcare costs IT Prof 15 21-79
  • [4] Tarczy-Hornoch P(2020)Automated machine learning: Review of the state-of-the-art and opportunities for healthcare Artif Intell Med 104 101822-82
  • [5] Wilcox AB(2016)Prediction of in-hospital mortality in emergency department patients with sepsis: A local big data–driven, machine learning approach Acad Emerg Med 23 269-72
  • [6] Mooney SD(2017)Disease prediction by machine learning over big data from healthcare communities IEEE Access 5 8869-16
  • [7] Sheng X(1997)No free lunch theorems for optimization IEEE Trans Evol Comput 1 67-13
  • [8] Haug PJ(2021)Benchmark and survey of automated machine learning frameworks J Artif Intell Res 70 409-16
  • [9] Nkoy FL(2020)Mlperf: An industry standard benchmark suite for machine learning performance IEEE Micro 40 8-13
  • [10] Osawa I(2017)Pmlb: a large benchmark suite for machine learning evaluation and comparison BioData Min 10 1-12