On Eigenvalue Bounds for a General Class of Sturm-Liouville Operators

被引:0
|
作者
Christian Seifert
机构
[1] Ludwig-Maximilians-Universität München,Mathematisches Institut
来源
Mathematical Physics, Analysis and Geometry | 2016年 / 19卷
关键词
Jacobi operators; Sturm-Liouville operators; Eigenvalue problem; Quasiperiodic operators; Transfer matrices; 34L15; 34L40; 81Q12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Sturm-Liouville operators with measure-valued weight and potential, and positive, bounded diffusion coefficient which is bounded away from zero. By means of a local periodicity condition, which can be seen as a quantitative Gordon condition, we prove a bound on eigenvalues for the corresponding operator in Lp, for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq p<\infty $\end{document}. We also explain the sharpness of our quantitative bound, and provide an example for quasiperiodic operators.
引用
收藏
相关论文
共 50 条