Law of Large Numbers for Random Dynamical Systems

被引:0
作者
Katarzyna Horbacz
Maciej Ślȩczka
机构
[1] University of Silesia,Institute of Mathematics
来源
Journal of Statistical Physics | 2016年 / 162卷
关键词
Dynamical systems; Law of large numbers; Invariant measure; 60J25; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider random dynamical systems with randomly chosen jumps. The choice of deterministic dynamical system and jumps depends on a position. We prove the existence of an exponentially attractive invariant measure and the strong law of large numbers.
引用
收藏
页码:671 / 684
页数:13
相关论文
共 43 条
[1]  
Barnsley MF(1988)Invariant measures arising from iterated function systems with place dependent probabilities Ann. Inst. H. Poincaré 24 367-394
[2]  
Demko SG(2006)Degenerate convergence of semigroups related to a model of eukaryotic gene expression Semigroup Forum 73 343-366
[3]  
Elton JH(1969)Random evolutions, Markov chains and systems of partial differential equations Proc. Nat. Acad. Sci. USA 62 305-308
[4]  
Geronimo JS(2004)Random dynamical systems with jumps J. Appl. Probab. 41 890-910
[5]  
Bobrowski A(2006)Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations Boll. Unione Mat. Ital. 9 545-566
[6]  
Griego RJ(2013)Continuous random dynamical systems J. Math. Anal. Appl. 408 623-637
[7]  
Hersh R(2005)On stability of some general random dynamical system J. Statist. Phys. 119 35-60
[8]  
Horbacz K(1953)Some random walks arising in learning models Pacific J. Math. 3 725-756
[9]  
Horbacz K(1964)Stochastic equations and wave propagation in random media Proc. Sympos. Appl. Math. 16 1456-1470
[10]  
Horbacz K(2010)On ergodicity of some Markov processes Ann. Probab. 38 1401-1443