On the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cx^{2}+D=2y^{q}$$\end{document}

被引:0
作者
Nejib Ghanmi
Fadwa S. Abu Muriefah
机构
[1] University College of Jammum,Department of Mathematics
[2] Princess Nourah Bint Abdulrahman University,Department of Mathematics
关键词
Diophantine equation; Fibonacci sequence; Primitive divisor; Lehmer pair; Lucas sequence; Primary 11D41; Secondary 11D61; 11Y50;
D O I
10.1007/s11139-019-00165-w
中图分类号
学科分类号
摘要
Let C and D denote positive integers such that CD>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CD>1$$\end{document}. In this paper we investigate the solvability of the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cx^{2}+D=2y^{q}$$\end{document}, in positive integers x, y and odd prime number q where CD≢3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CD\not \equiv 3 \pmod 4$$\end{document} and CD is squarefree.
引用
收藏
页码:389 / 397
页数:8
相关论文
共 24 条
[1]  
Abu Muriefah FS(2009)On the Diophantine equation Int. J. Number Theory 5 1117-1128
[2]  
Luca F(2001)Existence of primitive divisors of Lucas and Lehmer numbers J. Reine Angew. Math. 539 75-122
[3]  
Siksek S(1880)Solution to problem Nouv. Corresp. Math. 6 423-24
[4]  
Tengely Sz(1996) (proposed by Gelin) Glasgow Math. J. 38 19-20
[5]  
Bilu Y(2011)Perfect Pell powers Internat. J. Math. Edu. Sci. Tech. 42 337-367
[6]  
Hanrot G(2011)A short history of the Fibonacci and golden numbers with their applications J. Int. Seq. 14 1-12
[7]  
Voutier PM(1966)On Fibonacci and Lucas numbers of the form Math. Scand. 18 69-86
[8]  
Cesaro E(1988)On the Diophantine equation Fibonacci Q. 29 24-30
[9]  
Cohn JHE(2000)The G. C. D. in Lucas sequences and Lehmer number sequences Publ. Math. Debr. 57 535-545
[10]  
Debnath L(1990)Full powers in arithmetic progressions Fibonacci Q. 28 306-315