Boundedness in a two-dimensional two-species cancer invasion haptotaxis model without cell proliferation

被引:0
作者
Feng Dai
Linjie Ma
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
[3] Huazhong University of Science and Technology,Institute of Artificial Intelligence
[4] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
Cancer invasion; Haptotaxis; Tissue remodeling; Global existence; Boundedness; 35K20; 35A01; 35A09; 92C17; 35Q92;
D O I
暂无
中图分类号
学科分类号
摘要
This paper reconsiders the two-species cancer invasion haptotaxis model without cell proliferation c1t=Δc1-χ1∇·(c1∇v)-f(v)mc1,c2t=Δc2-χ2∇·(c2∇v)+f(v)mc1,τmt=Δm+c1+c2-m,vt=-mv+ηv(1-α1c1-α2c2-v)(⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} c_{1t}=\Delta c_1-\chi _1\nabla \cdot (c_1\nabla v)-f(v)mc_1, \\ c_{2t}=\Delta c_2-\chi _2\nabla \cdot (c_2\nabla v)+f(v)mc_1, \\ \tau m_t=\Delta m+c_1+c_2-m, \\ v_t=-mv+\eta v(1-\alpha _1c_1-\alpha _2c_2-v) \end{array}\right. }\quad (\star ) \end{aligned}$$\end{document}in a bounded and smooth domain Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^2$$\end{document} with homogeneous Neumann conditions, where χ1,χ2,η>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _1,\chi _2,\eta >0$$\end{document}, τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}, f(v)∈C1[0,∞);[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)\in C^1\left( [0,\infty );[0,\infty )\right) $$\end{document} and f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document}. It is well known that the absence of logistic source aggravates mathematical difficulties, which are overcome by constructing suitable Lyapunov functional. When the remodeling of ECM includes a competition with cancer cells (i.e., α1=α2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1=\alpha _2=1$$\end{document}), we prove that the associated initial-boundary value problem of (⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\star )$$\end{document} with τ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =0$$\end{document} admits a globally bounded classical solution for suitably small η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}, which complements the boundedness result on the homogenous Neumann problem of (⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\star )$$\end{document} with τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document} obtained in Dai and Liu (SIAM J Math Anal 54:1–35, 2022). When the competition with cancer cells is taken no account in the re-establishment of ECM (i.e., α1=α2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1=\alpha _2=0$$\end{document}), we establish the global boundedness of classical solution to the corresponding initial-boundary value problem of (⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\star )$$\end{document} with τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document} for arbitrarily large η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}, which is completely new. These results reveal the significant difference on the global boundedness of classical solution for the case whether or not the competition with cancer cells is contained in the remodeling of ECM.
引用
收藏
相关论文
共 175 条
[1]  
Aznavoorian S(1990)Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells J. Cell Biol. 110 1427-1438
[2]  
Stracke ML(2008)On the foundations of cancer modelling: selected topics, speculations, and perspectives Math. Models Methods Appl. Sci. 4 593-646
[3]  
Krutzsch H(2015)Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues Math. Models Methods Appl. Sci. 25 1663-1763
[4]  
Schiffmann E(2022)Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision Math. Models Methods Appl. Sci. 32 713-792
[5]  
Liotta LA(1973)Semi-linear second-order elliptic equations in J. Math. Soc. Japan 25 565-590
[6]  
Bellomo N(2016)Boundedness in a three-dimensional chemotaxis–haptotaxis model Z. Angew. Math. Phys. 67 11-1734
[7]  
Li NK(2005)Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system Math. Models Methods Appl. Sci. 15 1685-439
[8]  
Maini PK(2006)Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity Netw. Heterog. Media 1 399-143
[9]  
Bellomo N(2019)Large-data solutions in a three-dimensional chemotaxis–haptotaxis System with remodeling of non-diffusible attractant: the role of sub-linear production of diffusible signal Acta Appl. Math. 163 129-9406
[10]  
Belloquid A(2019)Optimal control and pattern formation for a haptotaxis model of solid tumor invasion J. Frankl. Inst. 356 9364-10918