Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem

被引:0
作者
Alain Billionnet
Sourour Elloumi
机构
[1] Institut d'Informatique d'Entreprise,Laboratoire CEDRIC
[2] Conservatoire National des Arts et Métiers,Laboratoire CEDRIC
来源
Mathematical Programming | 2007年 / 109卷
关键词
Integer programming; Quadratic 0-1 optimization; Convex quadratic relaxation; Semidefinite positive relaxation; Experiments; Max-cut;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider problem (P) of minimizing a quadratic function q(x)=xtQx+ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q+diag(u)) is positive semidefinite. Then, using the fact that xi2=xi, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved.
引用
收藏
页码:55 / 68
页数:13
相关论文
共 18 条
[1]  
Beasley undefined(11)undefined J. Oper. Res. Soc. 41 1069-undefined
[2]  
Boros undefined(2002)undefined Discrete Appl. Math. 123 155-undefined
[3]  
Glover undefined(1998)undefined Manag. Sci. 44 336-undefined
[4]  
Hammer undefined(1984)undefined Math. Prog. 28 121-undefined
[5]  
Hammer undefined(3)undefined Revue Francaise d'Informatique et de Recherche Operationnelle 4 67-undefined
[6]  
Helmberg undefined(01)undefined Math. Prog. 82 291-undefined
[7]  
Helmberg undefined(3)undefined SIAM J. Optim. 10 673-undefined
[8]  
Iasemidis undefined(1)undefined J. Combinatorial Optim. 5 9-undefined
[9]  
Kim undefined(2001)undefined Optim. Meth. Software 15 201-undefined
[10]  
Körner undefined(5)undefined Optim. 19 711-undefined