On the harmonic continued fractions

被引:0
作者
Martin Bunder
Peter Nickolas
Joseph Tonien
机构
[1] University of Wollongong,School of Mathematics and Applied Statistics
[2] University of Wollongong,School of Computing and Information Technology
来源
The Ramanujan Journal | 2019年 / 49卷
关键词
Continued fractions; Euler polynomials; Stirling numbers; Stirling transform; 11A55; 11J70; 11B73;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the harmonic continued fractions. These form an infinite family of ordinary continued fractions with coefficients t1,t2,t3,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{t}{1}, \frac{t}{2}, \frac{t}{3}, \ldots $$\end{document} for all t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}. We derive explicit formulas for the numerator and the denominator of the convergents. In particular, when t is an even positive integer, we derive the limit value of the harmonic continued fraction. En route, we define and study convolution alternating power sums and prove some identities involving Euler polynomials and Stirling numbers, which are of independent interest.
引用
收藏
页码:669 / 697
页数:28
相关论文
共 6 条
[1]  
Beardon AF(2010)The Seidel, Stern, Stolz and Van Vleck theorems on continued fractions Bull. Lond. Math. Soc. 42 457-466
[2]  
Short I(2017)Closed form expressions for two harmonic continued fractions Math. Gaz. 101 439-448
[3]  
Bunder M(1750)De fractionibus continuis observationes Comment. Acad. Sci. Imp. Petropolitanae 11 32-81
[4]  
Tonien J(1848)Über die Kennzeichen der Konvergenz eines Kettenbruchs J. Reine Angew. Math. 37 255-272
[5]  
Euler L(undefined)undefined undefined undefined undefined-undefined
[6]  
Stern MA(undefined)undefined undefined undefined undefined-undefined