On Homomorphisms between C*-Algebras and Linear Derivations on C*-Algebras

被引:0
作者
Chun-Gil Park
Hahng-Yun Chu
Won-Gil Park
Hee-Jeong Wee
机构
[1] Chungnam National University,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2005年 / 55卷
关键词
*-algebra homomorphism; *-algebra; real rank zero; ℂ-linear *-derivation; stability;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that every almost linear Pexider mappings f, g, h from a unital C*-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} into a unital C*-algebra ℬ are homomorphisms when f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all unitaries u ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document}, all y ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document}, and all n ∈ ℤ, and that every almost linear continuous Pexider mappings f, g, h from a unital C*-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} of real rank zero into a unital C*-algebra ℬ are homomorphisms when f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all u ∈ {v ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} : v = v* and v is invertible}, all y ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} and all n ∈ ℤ.
引用
收藏
页码:1055 / 1065
页数:10
相关论文
共 12 条
[1]  
Brown L.(1991)*-algebras of real rank zero J. Funct. Anal. 99 131-149
[2]  
Pedersen G.(1994)A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings J. Math. Anal. Appl. 184 431-436
[3]  
Gavruta P.(1988)Approximately multiplicative maps between Banach algebras J. London Math. Soc. 37 294-316
[4]  
Johnson B. E.(1999)On Hyers-Ulam-Rassias stability of the Pexider equation J. Math. Anal. Appl. 239 20-29
[5]  
Jun K.(1985)Means and convex combinations of unitary operators Math. Scand. 57 249-266
[6]  
Kim B.(2002)On the Jensen's equation in Banach modules Taiwanese J. Math. 6 523-531
[7]  
Shin D.(1978)On the stability of the linear mapping in Banach spaces Proc. Amer. Math. Soc. 72 297-300
[8]  
Kadison R. V.(undefined)undefined undefined undefined undefined-undefined
[9]  
Pedersen G.(undefined)undefined undefined undefined undefined-undefined
[10]  
Park C.(undefined)undefined undefined undefined undefined-undefined