Hierarchical structure among invariant subspaces of chaotic neural networks

被引:0
|
作者
Motomasa Komuro
Kazuyuki Aihara
机构
[1] Teikyo University of Science & Technology,Department of Media Science
[2] School of Engineering,Department of Mathematical Engineering and Information Physics
[3] The University of Tokyo,undefined
[4] CREST,undefined
[5] Japan Science and Technology Corporation (JST),undefined
来源
Japan Journal of Industrial and Applied Mathematics | 2001年 / 18卷
关键词
chaos; neural networks; associative memory; invariant subspaces; isotropy groups;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse symmetrical structure among invariant subspaces in chaotic neural networks with ability of dynamical association. In particular, we elucidate hierarchical structure, or lattice structure among invariant subspaces supporting a skelton of associative dynamics.
引用
收藏
页码:335 / 357
页数:22
相关论文
共 50 条