Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs

被引:0
作者
A. Altukroni
A. Alsaeedi
C. Gonzalez-Losada
J. H. Lee
M. Alabudh
M. Mirah
S. El-Amri
O. Ezz El-Deen
机构
[1] Ministry of Health,Department of Computer Science, College of Computer Science and Engineering
[2] Taibah University,School of Dentistry
[3] Complutense University of Madrid,Department of Periodontology, College of Dentistry and Institute of Oral Bioscience
[4] Jeonbuk National University,Department of Dental Materials
[5] Taibah University,undefined
[6] Ministry of Health,undefined
[7] Ministry of Health,undefined
来源
BMC Oral Health | / 23卷
关键词
Artificial Intelligence; Caries; Deep Learning; Pulp Exposure; Periapical Radiograph; Yolov5x;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 79 条
[1]  
Estay J(2017)Effect of Clinical Experience on Accuracy and Reliability of Radiographic Caries Detection Int J Odontostomatol 3 347-52
[2]  
Bersezio C(2021)Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks Ann Transl Med 9 763-29
[3]  
Arias R(2019)A guide to deep learning in healthcare Nat Med 1 24-210
[4]  
Fernández E(2017)Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer JAMA 318 2199-8
[5]  
Oliveira Junior OB(2019)Detecting and interpreting myocardial infarction using fully convolutional neural networks Physiol Meas 1 15001-41
[6]  
Ferrarezi de Andrade M(2018)Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success J Am Coll Radiol 15 504-606
[7]  
Zheng L(2020)Basics of Deep Learning: A Radiologist’s Guide to Understanding Published Radiology Articles on Deep Learning Korean J Radiol 1 33-92
[8]  
Wang H(2019)Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide Radiology 3 590-884
[9]  
Mei L(2020)The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review Dentomaxillofac Radiol 1 20190107-832
[10]  
Chen Q(2020)Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review Imaging Sci Dent 2 81-13