Integrable S matrix, mirror TBA and spectrum for the stringy AdS3 × S3 × S3 × S1 WZW model

被引:0
作者
A. Dei
A. Sfondrini
机构
[1] ETH Zürich,Institut für theoretische Physik
来源
Journal of High Energy Physics | / 2019卷
关键词
AdS-CFT Correspondence; Integrable Field Theories; Bethe Ansatz;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the tree-level bosonic S matrix in light-cone gauge for superstrings on pure-NSNS AdS3 × S3 × S3 × S1. We show that it is proportional to the identity and that it takes the same form as for AdS3 × S3 × T4 and for flat space. Based on this, we make a conjecture for the exact worldsheet S matrix and derive the mirror thermodynamic Bethe ansatz (TBA) equations describing the spectrum. Despite a non-trivial vacuum energy, they can be solved in closed form and coincide with a simple set of Bethe ansatz equations — again much like AdS3 × S3 × T4 and flat space. This suggests that the model may have an integrable spin-chain interpretation. Finally, as a check of our proposal, we compute the spectrum from the worldsheet CFT in the case of highest-weight representations of the underlying Kač-Moody algebras, and show that the mirror-TBA prediction matches it on the nose.
引用
收藏
相关论文
共 216 条
  • [1] Maldacena JM(1999)The Large N limit of superconformal field theories and supergravity Int. J. Theor. Phys. 38 1113-undefined
  • [2] Gubser SS(1998)Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105-undefined
  • [3] Klebanov IR(1998)Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253-undefined
  • [4] Polyakov AM(2002)Microscopic formulation of black holes in string theory Phys. Rept. 369 549-undefined
  • [5] Witten E(1998)Comments on string theory on AdS Adv. Theor. Math. Phys. 2 733-undefined
  • [6] David JR(1999)String theory on AdS Phys. Lett. B 449 180-undefined
  • [7] Mandal G(1988) × S Phys. Lett. B 208 447-undefined
  • [8] Wadia SR(2018) × S JHEP 05 101-undefined
  • [9] Giveon A(2003) × S JHEP 01 077-undefined
  • [10] Kutasov D(2003)Superconformal Algebras in Two-Dimensions with N = 4 JHEP 10 028-undefined