On the estimation of a monotone conditional variance in nonparametric regression

被引:0
作者
Holger Dette
Kay Pilz
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik
来源
Annals of the Institute of Statistical Mathematics | 2009年 / 61卷
关键词
Nonparametric regression; Heteroscedasticity; Variance function; Monotonicity; Order restricted inference;
D O I
暂无
中图分类号
学科分类号
摘要
A monotone estimate of the conditional variance function in a heteroscedastic, nonparametric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an estimate of the inverse variance function. The final monotone estimate of the variance function is obtained by an inversion of this function. The method is applicable to a broad class of nonparametric estimates of the conditional variance and particularly attractive to users of conventional kernel methods, because it does not require constrained optimization techniques. The approach is also illustrated by means of a simulation study.
引用
收藏
页码:111 / 141
页数:30
相关论文
共 47 条
[1]  
Akritas M.(2001)Nonparametric estimation of the residual distribution Scandinavian Journal of Statistics 28 549-567
[2]  
Van Keilegom I.(1988)Signal to noise ratios, performance criteria and transformation Technometrics (with discussions) 30 1-40
[3]  
Box G.E.P.(1955)Maximum likelihood estimates of monotone parameters The Annals of Mathematical Statistics 26 607-616
[4]  
Brunk H.D.(1982)Adapting for heteroscedasticity in linear models The Annals of Statistics 10 1224-1233
[5]  
Carroll R.J.(1998)Testing heteroscedasticity in nonparametric regression Journal of the Royal Statistical Society, Series B 60 693-708
[6]  
Dette H.(1998)Estimating the variance in nonparametric regression—what is a reasonable choice? Journal of the Royal Statistical Society, Series B 60 751-764
[7]  
Munk A.(2006)A simple nonparametric estimator of a monotone regression function Bernoulli 12 469-490
[8]  
Dette H.(1995)Data driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaption Journal of the Royal Statistical Society, Series B 57 371-394
[9]  
Munk A.(1998)Efficient estimation of conditional variance functions in stochastic regression Biometrika 85 645-660
[10]  
Wagner T.(1986)Residual variance and residual pattern in nonlinear regression Biometrika 73 626-633