共 74 条
- [1] Abe M., Suzuki T., Fujii Y., Hada M., An ab initio study based on a finite nucleus model for isotope fractionation in the U(III)–U(IV) exchange reaction system, J Chem Phys, 128, pp. 144309-1-144309-6, (2008)
- [2] Abe M., Suzuki T., Fujii Y., Hada M., Hirao K., An ab initio molecular orbital study of the nuclear volume effects in uranium isotope fractionations, J Chem Phys, 129, pp. 164309-1-164309-7, (2008)
- [3] Abe M., Suzuki T., Fujii Y., Hada M., Hirao K., Ligand effect on uranium isotope fractionations caused by nuclear volume effects: An ab initio relativistic molecular orbital study, J Chem Phys, 133, pp. 044309-1-044309-5, (2010)
- [4] Angeli I., A consistent set of nuclear rms charge radii: properties of the radius surface R (N, Z), Atom Data Nucl Data Tables, 87, pp. 185-206, (2004)
- [5] Aufmuth P., Heilig K., Steudel A., Changes in mean-square nuclear charge radii from optical isotope shifts, Atom Data Nucl Data Tables, 37, pp. 455-490, (1987)
- [6] Basu A., Sanford R.A., Johnson T.H., Lundstrom C.C., LOffler F.E., Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates, Geochim Cosmochim Acta, 136, pp. 100-113, (2014)
- [7] Bergquist B.A., Blum J.D., Mass-dependent and –independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, pp. 417-419, (2007)
- [8] Bigeleisen J., Nuclear size and shape effects in chemical reaction. Isotope chemistry of the heavy elements, J Am Chem Soc, 118, pp. 3676-3680, (1996)
- [9] Bigeleisen J., Second-order correction to the Bigeleisen–Mayer equation due to the nuclear field shift, Proc Natl Acad Sci USA, 95, pp. 4809-4908, (1998)
- [10] Bigeleisen J., Mayer M.G., Calculation of equilibrium constants for isotopic exchange reactions, J Chem Phys, 15, pp. 261-267, (1947)