On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis

被引:0
作者
F. Brackx
B. De Knock
H. De Schepper
F. Sommen
机构
[1] Ghent University,Clifford Research Group Department of Mathematical Analysis Faculty of Engineering
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2009年 / 40卷
关键词
Cauchy integral formula; Martinelli-Bochner integral formula; Hermitean Clifford analysis; 30G35; 32A26; 46F10;
D O I
暂无
中图分类号
学科分类号
摘要
Euclidean Clifford analysis is a higher dimensional function theory, refining harmonic analysis, centred around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator, called the Dirac operator. More recently, Hermitean Clifford analysis has emerged as a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions of two Hermitean Dirac operators, invariant under the action of the unitary group. In this paper, a Cauchy integral formula is established by means of a matrix approach, allowing the recovering of the traditional Martinelli-Bochner formula for holomorphic functions of several complex variables as a special case.
引用
收藏
页码:395 / 416
页数:21
相关论文
共 35 条
[11]  
Sommen F.(undefined)undefined undefined undefined undefined-undefined
[12]  
Brackx F.(undefined)undefined undefined undefined undefined-undefined
[13]  
Bureš J.(undefined)undefined undefined undefined undefined-undefined
[14]  
De Schepper H.(undefined)undefined undefined undefined undefined-undefined
[15]  
Eelbode D.(undefined)undefined undefined undefined undefined-undefined
[16]  
Sommen F.(undefined)undefined undefined undefined undefined-undefined
[17]  
Souček V.(undefined)undefined undefined undefined undefined-undefined
[18]  
Brackx F.(undefined)undefined undefined undefined undefined-undefined
[19]  
Bureš J.(undefined)undefined undefined undefined undefined-undefined
[20]  
De Schepper H.(undefined)undefined undefined undefined undefined-undefined