On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis

被引:0
作者
F. Brackx
B. De Knock
H. De Schepper
F. Sommen
机构
[1] Ghent University,Clifford Research Group Department of Mathematical Analysis Faculty of Engineering
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2009年 / 40卷
关键词
Cauchy integral formula; Martinelli-Bochner integral formula; Hermitean Clifford analysis; 30G35; 32A26; 46F10;
D O I
暂无
中图分类号
学科分类号
摘要
Euclidean Clifford analysis is a higher dimensional function theory, refining harmonic analysis, centred around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator, called the Dirac operator. More recently, Hermitean Clifford analysis has emerged as a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions of two Hermitean Dirac operators, invariant under the action of the unitary group. In this paper, a Cauchy integral formula is established by means of a matrix approach, allowing the recovering of the traditional Martinelli-Bochner formula for holomorphic functions of several complex variables as a special case.
引用
收藏
页码:395 / 416
页数:21
相关论文
共 35 条
[1]  
Abreu Blaya R.(2009)Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces Bound. Value Probl. 2009 ID 425256-365
[2]  
Bory Reyes J.(2008)Aboundaryvalue problem for Hermitian monogenic functions Bound. Value Probl. 2008 ID 385874-1079
[3]  
Brackx F.(2007)Fundaments of Hermitean Clifford Analysis. Part I: Complex structure Compl. Anal. Oper. Theory 1 341-1078
[4]  
De Knock B.(2007)Fundaments of Hermitean Clifford Analysis Part II: Splitting of h-monogenic equations. Complex Var. Elliptic Eq. 52 1063-487
[5]  
De Schepper H.(2008)A matrix Hilbert transform in Hermitean Clifford analysis J. Math. Anal. Applic. 344 1068-180
[6]  
Pena Pena D.(2008)The Hermitian Clifford analysis toolbox Appl. Clifford Algebras 18 451-149
[7]  
Sommen F.(2004)On Some Properties of the Hilbert Transform in Euclidean Space Bull. Belg. Math. Soc. — Simon Stevin 11 163-1414
[8]  
Abreu Blaya R.(1982)ComplexifiedCliffordanalysis Complex Variables: Theory & Application 1 119-1055
[9]  
Bory Reyes J.(2002)Hermitian Clifford analysis and resolutions Math. Meth. Appl. Sci. 25 1395-undefined
[10]  
Pena Penaand D.(2007)A Martinelli-Bochner formula for the Hermitian Dirac equation Math. Meth. Appl. Sci. 30 1049-undefined