The General Solution to a System of Coupled Sylvester-Type Quaternion Tensor Equations Involving η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermicity

被引:1
作者
Zhuo-Heng He
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,International Research Center for Tensor and Matrix Theory
关键词
Tensor equation; Quaternion; Sylvester-type equations; General solution; 15A09; 11R52; 15A69;
D O I
10.1007/s41980-019-00205-7
中图分类号
学科分类号
摘要
Let HI1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^{I_{1}\times \cdots \times I_{N}}$$\end{document} be the set of the order N dimension I1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{1}\times \cdots \times I_{N}$$\end{document} tensors over the real quaternion algebra H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}. For η∈{i,j,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \in \{\mathbf {i},\mathbf {j},\mathbf {k}\}$$\end{document}, a quaternion tensor A∈HI1×⋯×IN×I1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}\in \mathbb {H}^{I_{1}\times \cdots \times I_{N}\times I_{1}\times \cdots \times I_{N}}$$\end{document} is said to be η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian if A=Aη∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}=\mathcal {A}^{\eta *}$$\end{document}, where Aη∗=-ηA∗η,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{\eta *}=-\eta \mathcal {A}^{*} \eta ,$$\end{document} and A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{*}$$\end{document} stands for the conjugate transpose of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. In this paper, we establish some necessary and sufficient solvability conditions for a system of quaternary-coupled Sylvester-type quaternion tensor equations. We give an expression of the general solution to this system when it is solvable. As an application of this system, we provide some necessary and sufficient conditions for the existence of a solution to the system of coupled Sylvester-type quaternion tensor equations involving η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermicity: A1∗NX-Y∗NB1=C1,A2∗NX-Z∗NB2=C2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{c} \mathcal {A}_{1}*_{N}\mathcal {X}-\mathcal {Y}*_{N}\mathcal {B}_{1}=\mathcal {C}_{1},\\ \mathcal {A}_{2}*_{N}\mathcal {X}-\mathcal {Z}*_{N}\mathcal {B}_{2}=\mathcal {C}_{2}, \end{array}\right. \end{aligned}$$\end{document}where the operation ∗N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*_{N}$$\end{document} is the Einstein product, Ai,Bi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{i},\mathcal {B}_{i},$$\end{document} and Ci(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{i}~(i=1,2)$$\end{document} are given tensors, X,Y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X},\mathcal {Y},$$\end{document} and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} are unknowns and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian. We also present an expression of the general solution to this system when the solvability conditions are met. Some algorithms and numerical examples are presented to illustrate the results of this paper.
引用
收藏
页码:1407 / 1430
页数:23
相关论文
共 155 条
[51]  
He ZH(2018)Output feedback eigenstructure assignment using two Sylvester equations Linear and Multilinear Algebra 67 1325-213
[52]  
Wang QW(2016)A quaternion widely linear adaptive filter Automatica 69 60-1016
[53]  
Zhang Y(2019)Quaternion-valued stochastic gradient-based adaptive IIR filtering Automatica 101 207-815
[54]  
He ZH(1994)Augmented second-order statistics of quaternion random signals IEEE Trans. Autom. Control 39 1014-2530
[55]  
Wang QW(2008)On the unitary diagonalization of a special class of quaternion matrices IEEE Trans. Autom. Control 53 811-1250
[56]  
Zhang Y(2010)Solvability conditions and general solution for the mixed Sylvester equations SIAM J. Matrix Anal. Appl. 31 2517-274
[57]  
Horn RA(2011)Systems of coupled generalized Sylvester matrix equations SIAM J. Matrix Anal. Appl. 32 1236-18
[58]  
Zhang FZ(2012)Iterative algorithms for solving some tensor equations Electron. J. Linear Algebra. 23 257-57
[59]  
Huang B(2017)Constraint generalized Sylvester matrix equations Adv. Appl. Clifford Algebras 27 1-550
[60]  
Ma C(1997)Constrained two-sided coupled Sylvester-type quaternion matrix equations Linear Algebra Appl. 251 21-1063