The General Solution to a System of Coupled Sylvester-Type Quaternion Tensor Equations Involving η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermicity

被引:1
作者
Zhuo-Heng He
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,International Research Center for Tensor and Matrix Theory
关键词
Tensor equation; Quaternion; Sylvester-type equations; General solution; 15A09; 11R52; 15A69;
D O I
10.1007/s41980-019-00205-7
中图分类号
学科分类号
摘要
Let HI1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^{I_{1}\times \cdots \times I_{N}}$$\end{document} be the set of the order N dimension I1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{1}\times \cdots \times I_{N}$$\end{document} tensors over the real quaternion algebra H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}. For η∈{i,j,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \in \{\mathbf {i},\mathbf {j},\mathbf {k}\}$$\end{document}, a quaternion tensor A∈HI1×⋯×IN×I1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}\in \mathbb {H}^{I_{1}\times \cdots \times I_{N}\times I_{1}\times \cdots \times I_{N}}$$\end{document} is said to be η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian if A=Aη∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}=\mathcal {A}^{\eta *}$$\end{document}, where Aη∗=-ηA∗η,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{\eta *}=-\eta \mathcal {A}^{*} \eta ,$$\end{document} and A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{*}$$\end{document} stands for the conjugate transpose of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. In this paper, we establish some necessary and sufficient solvability conditions for a system of quaternary-coupled Sylvester-type quaternion tensor equations. We give an expression of the general solution to this system when it is solvable. As an application of this system, we provide some necessary and sufficient conditions for the existence of a solution to the system of coupled Sylvester-type quaternion tensor equations involving η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermicity: A1∗NX-Y∗NB1=C1,A2∗NX-Z∗NB2=C2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{c} \mathcal {A}_{1}*_{N}\mathcal {X}-\mathcal {Y}*_{N}\mathcal {B}_{1}=\mathcal {C}_{1},\\ \mathcal {A}_{2}*_{N}\mathcal {X}-\mathcal {Z}*_{N}\mathcal {B}_{2}=\mathcal {C}_{2}, \end{array}\right. \end{aligned}$$\end{document}where the operation ∗N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*_{N}$$\end{document} is the Einstein product, Ai,Bi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{i},\mathcal {B}_{i},$$\end{document} and Ci(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{i}~(i=1,2)$$\end{document} are given tensors, X,Y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X},\mathcal {Y},$$\end{document} and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} are unknowns and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian. We also present an expression of the general solution to this system when the solvability conditions are met. Some algorithms and numerical examples are presented to illustrate the results of this paper.
引用
收藏
页码:1407 / 1430
页数:23
相关论文
共 155 条
[21]  
Mourrain B(2018)Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices Automatica 87 25-31
[22]  
De Lathauwer L(2019)The general J. Comput. Appl. Math. 349 93-113
[23]  
De Moor B(2012)-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations Linear Multilinear Algebra 60 1239-1244
[24]  
Vandewalle J(2018)Simultaneous decomposition of quaternion matrices involving Linear Multilinear Algebra 10 1536732-48
[25]  
Dehghan M(2018)-Hermicity with applications J. Comput. Appl. Math. 343 26-590
[26]  
Hajarian M(1996)A system of quaternary coupled Sylvester-type real quaternion matrix equations Linear Algebra Appl. 237 579-500
[27]  
Ding F(2009)A simultaneous decomposition for seven matrices with applications SIAM Rev. 51 455-152
[28]  
Chen T(2013)A generalization of the complex Autonne–Takagi factorization to quaternion matrices Linear Algebra Appl. 438 136-2995
[29]  
Ding WY(2018)An iterative algorithm to solve the generalized Sylvester tensor equations Adv. Appl. Clifford Algebras 28 90-385
[30]  
Wei YM(2000)A new real structure-preserving quaternion QR algorithm J. Phys. A 33 2971-680