The General Solution to a System of Coupled Sylvester-Type Quaternion Tensor Equations Involving η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermicity

被引:1
作者
Zhuo-Heng He
机构
[1] Shanghai University,Department of Mathematics
[2] Shanghai University,International Research Center for Tensor and Matrix Theory
关键词
Tensor equation; Quaternion; Sylvester-type equations; General solution; 15A09; 11R52; 15A69;
D O I
10.1007/s41980-019-00205-7
中图分类号
学科分类号
摘要
Let HI1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^{I_{1}\times \cdots \times I_{N}}$$\end{document} be the set of the order N dimension I1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{1}\times \cdots \times I_{N}$$\end{document} tensors over the real quaternion algebra H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}. For η∈{i,j,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \in \{\mathbf {i},\mathbf {j},\mathbf {k}\}$$\end{document}, a quaternion tensor A∈HI1×⋯×IN×I1×⋯×IN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}\in \mathbb {H}^{I_{1}\times \cdots \times I_{N}\times I_{1}\times \cdots \times I_{N}}$$\end{document} is said to be η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian if A=Aη∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}=\mathcal {A}^{\eta *}$$\end{document}, where Aη∗=-ηA∗η,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{\eta *}=-\eta \mathcal {A}^{*} \eta ,$$\end{document} and A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{*}$$\end{document} stands for the conjugate transpose of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. In this paper, we establish some necessary and sufficient solvability conditions for a system of quaternary-coupled Sylvester-type quaternion tensor equations. We give an expression of the general solution to this system when it is solvable. As an application of this system, we provide some necessary and sufficient conditions for the existence of a solution to the system of coupled Sylvester-type quaternion tensor equations involving η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermicity: A1∗NX-Y∗NB1=C1,A2∗NX-Z∗NB2=C2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{c} \mathcal {A}_{1}*_{N}\mathcal {X}-\mathcal {Y}*_{N}\mathcal {B}_{1}=\mathcal {C}_{1},\\ \mathcal {A}_{2}*_{N}\mathcal {X}-\mathcal {Z}*_{N}\mathcal {B}_{2}=\mathcal {C}_{2}, \end{array}\right. \end{aligned}$$\end{document}where the operation ∗N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*_{N}$$\end{document} is the Einstein product, Ai,Bi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{i},\mathcal {B}_{i},$$\end{document} and Ci(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{i}~(i=1,2)$$\end{document} are given tensors, X,Y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X},\mathcal {Y},$$\end{document} and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} are unknowns and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian. We also present an expression of the general solution to this system when the solvability conditions are met. Some algorithms and numerical examples are presented to illustrate the results of this paper.
引用
收藏
页码:1407 / 1430
页数:23
相关论文
共 155 条
[1]  
Barbour AD(1998)Solving the Stein equation in compound Poisson approximation Adv. Appl. Probab. 30 449-475
[2]  
Utev S(2004)Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing Signal Process. 84 1177-1199
[3]  
Bihan NL(2009)An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures J. Sound Vib. 324 471-489
[4]  
Mars J(2013)Solving multilinear systems via tensor inversion SIAM J. Matrix Anal. Appl. 34 542-570
[5]  
Brahma S(1996)Application of ADI iterative methods to the restoration of noisy images SIAM J. Matrix Anal. Appl. 17 165-186
[6]  
Datta B(2013)A survey on the spectral theory of nonnegative tensors Numer. Linear Algebra Appl. 20 891-912
[7]  
Brazell M(2012)A projection method and Kronecker product preconditioner for solving Sylvester tensor equations Sci. China Math. 55 1281-1292
[8]  
Li N(2008)Symmetric tensors and symmetric tensor rank SIAM J. Matrix Anal. Appl. 30 1254-1279
[9]  
Navasca C(2000)A multilinear singular value decomposition SIAM J. Matrix Anal. Appl. 21 1253-1278
[10]  
Tamon C(2011)Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations Appl. Math. Model. 35 3285-3300