Elastic and Inelastic Scattering of 9,10,11Be by 64Zn and 120Sn Nuclei at Different Energies

被引:0
作者
Awad A. Ibraheem
Ghadhiyyah M. Alzamanan
B. Alsarhani
M. El-Azab Farid
W. Alharbi
Sh. Hamada
机构
[1] King Khalid University,Physics Department
[2] Al-Azhar University,Physics Department
[3] Assiut University,Physics Department
[4] University of Jeddah,Physics Department, Faculty of Science
[5] Tanta University,Physics Department, Faculty of Science
来源
Brazilian Journal of Physics | 2021年 / 51卷
关键词
Optical model; Elastic and inelastic scattering; Density distribution; Double folding potential;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of the double folding optical model, the elastic and inelastic scattering of 9Be + 120Sn at Elab (9Be) = 31, 42 and 50 MeV and 9,10,11Be + 64Zn elastic scattering at Ec.m. = 24.5 MeV are investigated. Real folded potentials are generated using the DDM3Y interaction based on the suggested density distributions for the 9,10,11Be nuclei. The imaginary potential is taken in the traditional standard Woods–Saxon form. Coupled channel (CC) calculations using a rotational model are performed for 9Be inelastically scattered from 120Sn, leading to different 120Sn excited states. Successful reproduction of the observed angular distributions of the elastic and inelastic scattering differential cross-sections has been achieved using the derived potentials. Special attention is paid to the previously suggested (31−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {3}_1^{-} $$\end{document}, Ex = 2.40 MeV) 120Sn excited state in order to present the contributions come from - 31−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {3}_1^{-} $$\end{document} at 2.40030(5) MeV, 23+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {2}_3^{+} $$\end{document} at 2.42090(3) MeV, 22+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {2}_2^{+} $$\end{document} at 2.355383(24) MeV, and 41+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {4}_1^{+} $$\end{document} at 2.465632(23) MeV—in forming the inelastic data observed at Ex = 2.41 MeV.
引用
收藏
页码:753 / 763
页数:10
相关论文
共 70 条
  • [1] Di Pietro A(2010)undefined Phys. Rev. Lett. 105 022701-undefined
  • [2] Di Pietro A(2012)undefined Phys. Rev. C85 054607-undefined
  • [3] Keeley N(2003)undefined Phys. Rev. C67 044604-undefined
  • [4] Chen J(2016)undefined Phys. Rev. C93 034623-undefined
  • [5] Freer M(2007)undefined Rep. Prog. Phys. 70 2149-undefined
  • [6] Tanihata I(1988)undefined Phys. Lett. B 206 592-undefined
  • [7] Kobayashi T(2018)undefined Phys. Rev. C97 044609-undefined
  • [8] Yamakawa O(1997)undefined Phys. Rev. Lett. 79 5218-undefined
  • [9] Shimoura S(2003)undefined Nucl. Phys. A 723 93-undefined
  • [10] Ekuni K(1986)undefined Prog. Theor. Phys. Suppl. 89 32-undefined