Characterizations of reverse dynamic weighted Hardy-type inequalities with kernels on time scales

被引:0
作者
S. H. Saker
M. M. Osman
D. O’Regan
R. P. Agarwal
机构
[1] Galala University,Mathematics Division, Faculty of Advanced Basic Sciences
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[4] Texas A & M University,Department of Mathematics
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Reversed Hardy’s inequality; Dynamic inequalities; Time scales; 26A15; 26D10; 26D15; 39A13; 34A40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some conditions on nonnegative rd-continuous weight functions ux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\left( x\right) $$\end{document} and υx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upsilon \left( x\right) $$\end{document} which ensure that a reverse dynamic inequality of the form ∫a∞fp(x)υxΔx1p≤C∫a∞ux∫aσxKσx,σyf(y)ΔyqΔx1q,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( \int _{a}^{\infty }f^{p}(x)\upsilon \left( x\right) \Delta x\right) ^{ \frac{1}{p}}\le C\left( \int _{a}^{\infty }u\left( x\right) \left( \int _{a}^{\sigma \left( x\right) }\mathcal {K}\left( \sigma \left( x\right) ,\sigma \left( y\right) \right) f(y)\Delta y\right) ^{q}\Delta x\right) ^{ \frac{1}{q}}, \end{aligned}$$\end{document}holds when q≤p<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\le p<0$$\end{document} and 0<q≤p<1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q\le p<1.$$\end{document} Corresponding dual results are also obtained. In particular, we prove some reverse dynamic weighted Hardy-type inequalities with kernels on time scales which as special cases contain some generalizations of integral and discrete inequalities due to Beesack and Heinig.
引用
收藏
页码:125 / 146
页数:21
相关论文
共 41 条
[1]  
Andersen KF(1983)Weighted norm inequalities for certain integral operators SIAM J. Math. Anal. 14 834-844
[2]  
Heinig HP(1989)Weighted inequalities of Hardy type Sibirskii Matem. Zhurnal 30 13-22
[3]  
Batuev EN(1981)Hardy’s inequalities with indices less than Proc. Am. Math. Soc. 83 532-536
[4]  
Stepanov VD(2013)Minkowski and Beckenbach–Dresher inequalities and functionals on time scales J. Math. Ineq. 7 299-312
[5]  
Bessack PR(1978)Hardy inequalities with mixed norms Can. Math. Bull. 21 405-408
[6]  
Heinig HP(1985)Weighted norm inequalities for certain integral operators II Proc. Am. Math. Soc. 95 387-395
[7]  
Bibi R(1979)On Hardy’s inequalities in weighted spaces Soobshch. Akad. Nauk. Gruzin. SSR 96 37-40
[8]  
Bohner M(1972)Hardy’s inequality with weights Stud. Math. 44 31-38
[9]  
Pečarić J(2004)Weighted Hardy’s inequalities for negative indices Publicacions Matemàtiques 48 423-443
[10]  
Varošanec S(2016)Weighted Hardy-type inequalities on time scales with applications Mediterr. J. Math. 13 585-606