Extension of isometries from the unit sphere of a rank-2 Cartan factor

被引:0
作者
Ondřej F. K. Kalenda
Antonio M. Peralta
机构
[1] Charles University,Faculty of Mathematics and Physics, Department of Mathematical Analysis
[2] Universidad de Granada,Departamento de Análisis Matemático, Facultad de Ciencias
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Tingley’s problem; Mazur–Ulam property; Extension of isometries; Rank-2 Cartan factors; Spin factor; 17C65; 46A22; 46B20; 46B04;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every surjective isometry from the unit sphere of a rank-2 Cartan factor C onto the unit sphere of a real Banach space Y, admits an extension to a surjective real linear isometry from C onto Y. The conclusion also covers the case in which C is a spin factor. This result closes an open problem and, combined with the conclusion in a previous paper, allows us to establish that every JBW∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {JBW}^*$$\end{document}-triple M satisfies the Mazur–Ulam property, that is, every surjective isometry from its unit sphere onto the unit sphere of a arbitrary real Banach space Y admits an extension to a surjective real linear isometry from M onto Y.
引用
收藏
相关论文
共 86 条
  • [1] Barton JT(1986)-continuity of Jordan triple products and applications Math. Scand. 59 177-191
  • [2] Timoney RM(2010)Bell’s correlations and spin systems Found. Phys. 40 1065-1075
  • [3] Bohata M(1978)A holomorphic characterization of Jordan- Math. Z. 161 277-290
  • [4] Hamhalter J(1992)-algebras Pacific J. Math. 153 249-265
  • [5] Braun RB(2006)Compact operations, multipliers and Radon-Nikodym property in Quart. J. Math. Oxford 57 37-48
  • [6] Kaup W(2008)-triples J. Math. Anal. Appl. 348 220-233
  • [7] Upmeier H(2019)A Saitô-Tomita-Lusin theorem for J. Math. Anal. Appl. 476 319-336
  • [8] Bunce LJ(2011)-triples and applications J. Math. Anal. Appl. 377 464-470
  • [9] Chu C-H(1990)Orthogonality preservers in Proc. Amer. Math. Soc. 108 19-24
  • [10] Bunce LJ(2020)-algebras, Linear Multilinear Algebra 68 337-362