Estimation of weak ARMA models with regime changes
被引:0
|
作者:
Yacouba Boubacar Maïnassara
论文数: 0引用数: 0
h-index: 0
机构:Université Bourgogne Franche-Comté,Laboratoire de mathématiques de Besançon, UMR CNRS 6623
Yacouba Boubacar Maïnassara
Landy Rabehasaina
论文数: 0引用数: 0
h-index: 0
机构:Université Bourgogne Franche-Comté,Laboratoire de mathématiques de Besançon, UMR CNRS 6623
Landy Rabehasaina
机构:
[1] Université Bourgogne Franche-Comté,Laboratoire de mathématiques de Besançon, UMR CNRS 6623
来源:
Statistical Inference for Stochastic Processes
|
2020年
/
23卷
关键词:
Least square estimation;
Random coefficients;
Weak ARMA models;
Primary 62M10;
62F03;
62F05;
Secondary 91B84;
62P05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we derive the asymptotic properties of the least squares estimator (LSE) of autoregressive moving-average (ARMA) models with regime changes under the assumption that the errors are uncorrelated but not necessarily independent. Relaxing the independence assumption considerably extends the range of application of the class of ARMA models with regime changes. Conditions are given for the consistency and asymptotic normality of the LSE. A particular attention is given to the estimation of the asymptotic covariance matrix, which may be very different from that obtained in the standard framework. The theoretical results are illustrated by means of Monte Carlo experiments.
机构:
Univ Torcuata Tella, Dept Math & Estadist, RA-1428 Buenos Aires, DF, ArgentinaUniv Torcuata Tella, Dept Math & Estadist, RA-1428 Buenos Aires, DF, Argentina
Muler, Nora
Pena, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Estadist, Madrid 28903, SpainUniv Torcuata Tella, Dept Math & Estadist, RA-1428 Buenos Aires, DF, Argentina
Pena, Daniel
Yohai, Victor J.
论文数: 0引用数: 0
h-index: 0
机构:Univ Torcuata Tella, Dept Math & Estadist, RA-1428 Buenos Aires, DF, Argentina