Discrete Approximations of Dynamical Quantum Zeno Effect

被引:0
作者
Il’yn N.B. [1 ]
Pechen’ A.N. [1 ,2 ]
机构
[1] Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow
[2] National University of Science and Technology MISiS, Moscow
关键词
49K15; 81V80; quantum control theory; quantum measurements; quantum Zeno effect; qubit; twolevel system;
D O I
10.1007/s10958-019-04414-7
中图分类号
学科分类号
摘要
In this paper, we discuss approximations of the dynamical quantum Zeno effect by a fixed number of nonselective quantum measurements. A wide class of measurements whose efficiency is close to optimal in the case of two-level systems is found. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:158 / 167
页数:9
相关论文
共 19 条
[1]  
Accardi L., Kozyrev S.V., Pechen' A.N., Coherent quantum control of Λ-atoms through the stochastic limit, Quantum Information and Computing (L. Accardi, M. Ohya, and N. Watanabe, eds.), QPPQ: Quantum Probab. White Noise Anal., 19, pp. 1-17, (2006)
[2]  
Accardi L., Yun Gang L., Volovich I.V., Quantum Theory and Its Stochastic Limit, (2002)
[3]  
Balachandran A.P., Roy S.M., Quantum anti-Zeno paradox, Phys. Rev. Lett., 84, (2000)
[4]  
Balachandran A.P., Roy S.M., Continuous time-dependent measurements: quantum anti- Zeno paradox with applications, Int. J. Mod. Phys. A., 17, pp. 4007-4024, (2002)
[5]  
Belavkin V.P., On the theory of controlling observable quantum systems, Automat. Remote Control., 44, 2, (1983)
[6]  
Fu S., Shi G., Proutiere A., James M.R., Feedback policies for measurement-based quantum state manipulation, Phys. Rev. A, 90, (2014)
[7]  
Grishanin B.A., Zadkov V.N., Entangling quantum measurements, Opt. Spectrosc., 96, pp. 751-759, (2004)
[8]  
Ivanov M.G., Understanding of Quantim Mechanics [in Russian], (2012)
[9]  
Khalfin L.A., On the theory of the decay of a quasi-stationary state, Dokl. Akad. Nauk SSSR, 115, pp. 277-280, (1957)
[10]  
Khalfin L.A., On the quantum theory of nonstable elementary particles, Dokl. Akad. Nauk SSSR, 141, (1961)