New integrable (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document})-dimensional systems and contact geometry

被引:0
作者
A. Sergyeyev
机构
[1] Silesian University in Opava,Mathematical Institute
关键词
Dispersionless systems; (; )-Dimensional integrable systems; Contact Lax pairs; Contact bracket; Conservation laws; 37K05; 37K10; 53D10;
D O I
10.1007/s11005-017-1013-4
中图分类号
学科分类号
摘要
We introduce a novel systematic construction for integrable (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document})-dimensional dispersionless systems using nonisospectral Lax pairs that involve contact vector fields. In particular, we present new large classes of (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document})-dimensional integrable dispersionless systems associated with the Lax pairs which are polynomial and rational in the spectral parameter.
引用
收藏
页码:359 / 376
页数:17
相关论文
共 72 条
[1]  
Adler VE(2000)Symmetry approach to the integrability problem Theor. Math. Phys. 125 1603-1661
[2]  
Shabat AB(2017)Complex reflection groups, logarithmic connections and bi-flat Lett. Math. Phys. 107 1919-1961
[3]  
Yamilov RI(2002)-manifolds Phys. Lett. A 297 191-195
[4]  
Arsie A(2002)Classical J. Phys. A Math. Gen. 35 10345-10364
[5]  
Lorenzoni P(2014)-matrices on Poisson algebras and related dispersionless systems J. Phys. Conf. Ser. 482 012005-240
[6]  
Błaszak M(1987)Classical Theor. Math. Phys. 70 227-1179
[7]  
Błaszak M(2016)-matrix theory of dispersionless systems. II. (2+1) dimension theory Lett. Math. Phys. 106 1139-83
[8]  
Szablikowski B(2001)Projective differential geometry of multidimensional dispersionless integrable hierarchies Rev. R. Acad. Cien. Serie A. Mat. 95 65-669
[9]  
Bogdanov LV(1983)Inverse scattering method with variable spectral parameter Sov. Math. Dokl. 270 665-35
[10]  
Konopelchenko BG(2007)Self-consistent sources for integrable equations via deformations of binary Darboux transformations J. Math. Phys. 48 093502-299