Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces

被引:0
|
作者
Liu Xiaofeng
Meng Wang
Zhifei Zhang
机构
[1] Donghua University,The Department of Applied Mathematics, School of Sciences
[2] Zhejiang University,The Department of Mathematics
[3] Beijing University,The Department of Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2010年 / 12卷
关键词
Primary 35Q35; secondary 76B03; 2D inviscid Boussinesq equations; blowup criterion;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the existence of the 2D inviscid Boussinesq equations in critical Besov spaces and obtain some blowup criteria.
引用
收藏
页码:280 / 292
页数:12
相关论文
共 50 条
  • [1] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Wang, Meng
    Zhang, Zhifei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 280 - 292
  • [2] WELL-POSEDNESS AND BLOWUP CRITERION OF GENERALIZED POROUS MEDIUM EQUATION IN BESOV SPACES
    Zhou, Xuhuan
    Xiao, Weiliang
    Zheng, Taotao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [3] ON THE WELL-POSEDNESS OF THE INVISCID BOUSSINESQ EQUATIONS IN THE BESOV-MORREY SPACES
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-An
    KINETIC AND RELATED MODELS, 2015, 8 (03) : 395 - 411
  • [4] Well-posedness for density-dependent Boussinesq equations without dissipation terms in Besov spaces
    Qiu, Hua
    Yao, Zheng'an
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (09) : 1920 - 1931
  • [5] Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces
    Qian Zhang
    Yehua Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 53 - 70
  • [6] Local Well-Posedness and Blow Up Criterion for the Inviscid Boussinesq System in Holder Spaces
    Cui Xiaona
    Dou Changsheng
    Jiu Quansen
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 25 (03): : 220 - 238
  • [7] Local well-posedness for the quasi-geostrophic equations in Besov-Lorentz spaces
    Zhang, Qian
    Zhang, Yehua
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 53 - 70
  • [8] Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces
    Liu, Xiaofeng
    Jia, Houyu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (04) : 845 - 852
  • [9] On the well-posedness in Besov-Herz spaces for the inhomogeneous incompressible Euler equations
    Ferreira, Lucas C. F.
    Machado, Daniel F.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 21 (01) : 1 - 29
  • [10] Local Well-Posedness for the Hyperelastic Rots Equation in Besov Space
    Shenggui LIU
    JournalofMathematicalResearchwithApplications, 2016, 36 (02) : 213 - 222