Higher order monotonic (multi-) sequences and their extreme points

被引:0
作者
Paul Ressel
机构
[1] Kath. Univ. Eichstätt-Ingolstadt,Math.
来源
Positivity | 2013年 / 17卷
关键词
-monotone; Extreme point; Survival function; 46A55; 40B05; 26A48;
D O I
暂无
中图分类号
学科分类号
摘要
Functions on the half-line which are non-negative and decreasing of a higher order have a long tradition. When normalized they form a simplex whose extreme points are well-known. For functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}_{0} = \{0, 1, 2, . . .\}}$$\end{document} the situation is different. Since an n-monotone sequence is in general not the restriction of an n-monotone function on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}_{+}}$$\end{document} (apart from n = 1 and n = 2), it is not even clear at the beginning if the normalized n-monotone sequences form a simplex. We will show in this paper that this is actually true, and we determine their extreme points. A corresponding result will also be proved for multi-sequences. The main ingredient in the proof will be a relatively new characterization of so-called survival functions of probability measures on (subsets of) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, in this case on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}^{n}_{0}}$$\end{document}.
引用
收藏
页码:333 / 340
页数:7
相关论文
共 5 条
[1]  
Boas R.P.(1940)Functions with positive differences Duke Math. J. 7 496-503
[2]  
Widder D.V.(1954)Theory of capacities Ann. Inst. Fourier 5 131-295
[3]  
Choquet G.(2011)Monotonicity properties of multivariate distribution and survival functions—swith an application to Lévy-frailty copulas J. Multivar. Anal. 102 393-404
[4]  
Ressel P.(1956)Multiply monotone functions and their Laplace transforms Duke Math. J. 23 189-207
[5]  
Williamson R.E.(undefined)undefined undefined undefined undefined-undefined