Precise force-field-based calculations of octanol-water partition coefficients for the SAMPL7 molecules

被引:0
作者
Shujie Fan
Hristo Nedev
Ranjit Vijayan
Bogdan I. Iorga
Oliver Beckstein
机构
[1] Arizona State University,Department of Physics
[2] Université Paris-Saclay,Department of Biology, College of Science
[3] CNRS,Department of Physics and Center for Biological Physics
[4] Institut de Chimie des Substances Naturelles,undefined
[5] UPR 2301,undefined
[6] Labex LERMIT,undefined
[7] United Arab Emirates University,undefined
[8] Arizona State University,undefined
来源
Journal of Computer-Aided Molecular Design | 2021年 / 35卷
关键词
Molecular dynamics; Solvation free energy; Free energy perturbation; Octanol-water partition coefficient; SAMPL7;
D O I
暂无
中图分类号
学科分类号
摘要
We predicted water-octanol partition coefficients for the molecules in the SAMPL7 challenge with explicit solvent classical molecular dynamics (MD) simulations. Water hydration free energies and octanol solvation free energies were calculated with a windowed alchemical free energy approach. Three commonly used force fields (AMBER GAFF, CHARMM CGenFF, OPLS-AA) were tested. Special emphasis was placed on converging all simulations, using a criterion developed for the SAMPL6 challenge. In aggregate, over 1000 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}s of simulations were performed, with some free energy windows remaining not fully converged even after 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}s of simulation time. Nevertheless, the amount of sampling produced logPow\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log P_{ow}$$\end{document} estimates with a precision of 0.1 log units or better for converged simulations. Despite being probably as fully sampled as can expected and is feasible, the agreement with experiment remained modest for all force fields, with no force field performing better than 1.6 in root mean squared error. Overall, our results indicate that a large amount of sampling is necessary to produce precise logPow\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log P_{ow}$$\end{document} predictions for the SAMPL7 compounds and that high precision does not necessarily lead to high accuracy. Thus, fundamental problems remain to be solved for physics-based logPow\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log P_{ow}$$\end{document} predictions.
引用
收藏
页码:853 / 870
页数:17
相关论文
共 119 条
[21]  
Maxwell DS(1995)Comparison of simple potential functions for simulating liquid water J Am Chem Soc 117 11,946-25
[22]  
Tirado-Rives J(2015)An all-atom empirical energy function for the simulation of nucleic acids SoftwareX 1–2 19-2254
[23]  
Damm W(2008)GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers J Chem Phys 129 124,105-7190
[24]  
Frontera A(2007)Statistically optimal analysis of samples from multiple equilibrium states J Phys Chem B 111 2242-8592
[25]  
Tirado-Rives J(1981)Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent J Appl Phys 52 7182-122
[26]  
Jorgensen W(1995)Polymorphic transitions in single crystals: a new molecular dynamics method J Chem Phys 103 8577-447
[27]  
Jorgensen WL(2008)A smooth particle mesh Ewald method J Chem Theory Comput 4 116-411
[28]  
McDonald NA(2008)P-LINCS: a parallel linear constraint solver for molecular simulation J Chem Theory Comput 4 435-1805
[29]  
McDonald NA(2015)GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation J Comput Aided Mol Des 29 397-89
[30]  
Jorgensen WL(2016)Guidelines for the analysis of free energy calculations J Chem Theory Comput 12 1799-2628