On the growth of solutions of some higher order linear differential equations

被引:0
作者
Abdallah El Farissi
Benharrat Belaïdi
机构
[1] University of Mostaganem (UMAB),Department of Mathematics, Laboratory of Pure and Applied Mathematics
来源
Applications of Mathematics | 2012年 / 57卷
关键词
linear differential equations; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; 34M10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f^{(k)}} + {A_{k - 1}}{f^{(k - 1)}} + ... + {A_2}f" + ({D_1}(z) + {A_1}(z){e^{az}})f' + ({D_0}(z) + {A_0}(z){e^{bz}})f = F(k \ge 2),$$\end{document} where a, b are complex constants that satisfy ab(a − b) ≠ 0 and Aj(z) (j = 0, 1, …, k − 1), Dj (z) (j = 0, 1), F(z) are entire functions with max{ϱ(Aj ) (j = 0, 1, …, k − 1), ϱ(Dj) (j = 0, 1) < 1. We also investigate the relationship between small functions and the solutions of the above equation.
引用
收藏
页码:377 / 390
页数:13
相关论文
共 17 条
  • [1] Amemiya I.(1981)Non-existence of finite order solutions of Hokkaido Math. J. 10 1-17
  • [2] Ozawa M.(2008)″+e Mat. Vesn. 60 233-246
  • [3] Belaïdi B.(2008)′+ Glas. Mat., Ser. III 43 363-373
  • [4] Belaïdi B.(1994)( Analysis 14 425-438
  • [5] El Farissi A.(2002)) Sci. China, Ser. A 45 290-300
  • [6] Chen Z.X.(2004) = 0 Acta Math. Sci., Ser. B, Engl. Ed. 24 52-60
  • [7] Chen Z.X.(1961)Growth and oscillation theory of solutions of some linear differential equations Comment. Math. Helv. 35 201-222
  • [8] Chen Z.X.(1961)Differential polynomials generated by some complex linear differential equations with meromorphic coefficients Comment. Math. Helv. 36 1-8
  • [9] Shon K.H.(1986)Zeros of meromorphic solutions of higher order linear differential equations Proc. R. Soc. Edinb., Sect. A 102 9-17
  • [10] Frei M.(1988)The growth of solutions of J. Lond. Math. Soc., II. Ser. 37 88-104