On the Brauer groups of fibrations

被引:0
作者
Qin, Yanshuai [1 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
关键词
Tate conjecture; Brauer group; Tate-Shafarevich group; ABELIAN-VARIETIES; TATE-CONJECTURE; K3; SURFACES; FINITENESS THEOREM; NUMBER-FIELDS; SHAFAREVICH; CURVES;
D O I
10.1007/s00209-024-03487-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X -> C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}\rightarrow C$$\end{document} be a flat k-morphism between smooth integral varieties over a finitely generated field k such that the generic fiber X is smooth, projective and geometrically connected. Assuming that C is a curve with function field K, we build a relation between the Tate-Shafarevich group of Pic X / K 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pic}<^>0_{X/K}$$\end{document} and the geometric Brauer groups of X \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document} and X, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.
引用
收藏
页数:20
相关论文
共 46 条
[1]  
Ambrosi E, 2018, PURE APPL MATH Q, V14, P515
[2]   On the Shafarevich and Tate conjectures for hyperkahler varieties [J].
Andre, Y .
MATHEMATISCHE ANNALEN, 1996, 305 (02) :205-248
[3]  
[Anonymous], 1996, Publ. Math. Inst. Hautes Etudes Sci
[4]   SHAFAREVICH-TATE CONJECTURE FOR PENCILS OF ELLIPTIC CURVES ON K3 SURFACES [J].
ARTIN, M ;
SWINNERT.HP .
INVENTIONES MATHEMATICAE, 1973, 20 (03) :249-266
[5]   PURITY FOR THE BRAUER GROUP [J].
Cesnavicius, Kestutis .
DUKE MATHEMATICAL JOURNAL, 2019, 168 (08) :1461-1486
[6]   The Tate conjecture for K3 surfaces over finite fields [J].
Charles, Francois .
INVENTIONES MATHEMATICAE, 2013, 194 (01) :119-145
[7]  
COLLIOT-THELENE J.-L., 2021, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, V71
[8]   Galois descent on the Brauer group [J].
Colliot-Thelene, Jean-Louis ;
Skorobogatov, Alexei N. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 682 :141-165
[9]   Resolution of singularities of threefolds in positive characteristic II [J].
Cossart, Vincent ;
Piltant, Olivier .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1836-1976
[10]   Boundedness of the p-primary torsion of the Brauer group of an abelian variety [J].
D'Addezio, Marco .
COMPOSITIO MATHEMATICA, 2024, 160 (02) :463-480