Embeddings for Morrey–Lorentz Spaces

被引:0
作者
Maria Alessandra Ragusa
机构
[1] Università di Catania,Dipartimento di Matematica e Informatica
来源
Journal of Optimization Theory and Applications | 2012年 / 154卷
关键词
Rearrangement functions; Lorentz spaces; Morrey spaces; Hölder inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, new classes of functions are defined. These spaces generalize Lorentz spaces and give a refinement of Lebesgue spaces, weak-Lebesgue spaces, and Morrey spaces. Some embeddings between these new classes are also proved.
引用
收藏
页码:491 / 499
页数:8
相关论文
共 30 条
[1]  
Lorentz G.G.(1950)Some new functional spaces Ann. Math. 51 37-55
[2]  
Lorentz G.G.(1951)On the theory of spaces Λ Pac. J. Math. 1 411-429
[3]  
Hunt R.A.(1964)The Marcinkiewicz interpolation theorem Proc. Am. Math. Soc. 15 996-998
[4]  
Weiss G.(2007)Weak Morrey spaces and strong solutions to the Navier–Stokes equations Sci. China Ser. A 50 1401-1417
[5]  
Miao C.X.(1994)Regularity for weak solutions to the Dirichlet problem in Morrey space Riv. Mat. Univ. Parma 5 355-369
[6]  
Yuang B.Q.(1964)Intermediate spaces and interpolation, the complex method Studia Math. 24 113-190
[7]  
Ragusa M.A.(1963)Nouvelles proprietes d’espaces d’interpolation C. R. Acad. Sci. 256 1424-1426
[8]  
Calderón A.P.(1964)Sur une classe d’espaces d’interpolation Inst. Hautes Études Sci. Publ. Math. 19 5-68
[9]  
Peetre J.(1973)Interpolation operator between J. Funct. Anal. 14 401-409
[10]  
Lions J.-L.(1966) and Usp. Math. Nauk 21 89-168