Removable Singularities for Anisotropic Elliptic Equations

被引:0
|
作者
Igor I. Skrypnik
机构
[1] Institute of Applied Mathematics and Mechanics of NAS of Ukraine,
来源
Potential Analysis | 2014年 / 41卷
关键词
35B45 * 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of quasi-linear elliptic equations with model representative ∑i=1n(|uxi|pi−2uxi)xi=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum _{i=1}^{n}(|u_{x_{i}}|^{p_{i}-2}u_{x_{i}})_{x_{i}}=0$\end{document}, which solutions have singularities on a smooth manifold. We establish the condition for removability of singularity on a manifold for solutions of such equations.
引用
收藏
页码:1127 / 1145
页数:18
相关论文
共 50 条