On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices

被引:0
|
作者
A. Öndül
T. Demirkol
H. Özdemir
机构
[1] Sakarya University,Department of Mathematics
来源
Afrika Matematika | 2024年 / 35卷
关键词
Fibonacci numbers; Fibonacci ; -matrix; Generalized Fibonacci numbers; Linear combination; Matrix equations; 15A15; 15A16; 15A24; 11B39; 11Y55;
D O I
暂无
中图分类号
学科分类号
摘要
It is given a characterization of being a matrix Qg(a3,b3)(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_3},{b_3})}^{(k)}$$\end{document} of linear combination of a matrix Qg(a1,b1)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_1},{b_1})}^{(n)}$$\end{document} and a matrix Qg(a2,b2)(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_2},{b_2})}^{(m)}$$\end{document}, where ai,bi∈R∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}, b_{i} \in \mathbb {R}^{*}$$\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1, 2, 3$$\end{document}, m,n,k∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m, n, k \in \mathbb {Z}$$\end{document}, and Qg(a,b)(l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a},{b})}^{(l)}$$\end{document} denotes an (a, b)-generalized Fibonacci Q-matrix with l∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \mathbb {Z}$$\end{document}. In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.
引用
收藏
相关论文
共 6 条
  • [1] On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices
    Ondul, A.
    Demirkol, T.
    Ozdemir, H.
    AFRIKA MATEMATIKA, 2024, 35 (01)
  • [2] A note on Q-matrices and higher order Fibonacci polynomials
    Ricci, Paolo Emilio
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (01) : 91 - 100
  • [3] Logarithmic encryption scheme for cyber-physical systems employing Fibonacci Q-matrix
    Zhou, Tianqi
    Shen, Jian
    Li, Xiong
    Wang, Chen
    Tan, Haowen
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 108 : 1307 - 1313
  • [4] On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials
    Guan, Hao
    Khan, Waseem Ahmad
    Kizilates, Can
    SYMMETRY-BASEL, 2023, 15 (04):
  • [5] A trace partitioned Gray code for q-ary generalized Fibonacci strings
    Bernini, A.
    Bilotta, S.
    Pinzani, R.
    Vajnovszki, V.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06) : 751 - 761
  • [6] The generalized quadraticity of linear combinations of two commuting quadratic matrices
    Uc, Mahmut
    Petik, Tugba
    Ozdemir, Halim
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09) : 1696 - 1715