Grain-Size-Dependent Low-Temperature Electrical Resistivity of Polycrystalline Co2MnAl Heusler Alloy Thin Films

被引:0
作者
Resul Yilgin
Mikihiko Oogane
Yasuo Ando
Terunobu Miyazaki
机构
[1] Tohoku University,Department of Applied Physics
来源
Journal of Superconductivity and Novel Magnetism | 2017年 / 30卷
关键词
Electrical resistivity; Conductivity; Electron-electron interactions; Heusler alloy;
D O I
暂无
中图分类号
学科分类号
摘要
Low-temperature electrical resistivity of Co2MnAl Heusler alloy thin films prepared by DC magnetron sputtering technique has been investigated. After deposition of Co2MnAl thin films, they were annealed at 200–400 ∘C to control the crystal structure and the atomic order between Co, Mn, and Al sites. The ratio of intensity of (200) and (220) XRD peaks increases with increasing annealing temperature. The low-temperature dependence of electrical resistivity demonstrated that the film structure and magnetic ordering effected to the resistivity of Co2MnAl. The temperature dependence of resistivity for all samples has demonstrated the exponential decrease when temperature increases. However, 1000 ∗(1 /T) dependence of the logarithmic resistivity variation has not demonstrated the linear characteristic for all samples, and also, the temperature dependency of the deposited and annealed films has not been agreed with logarithmic, ρ(T)∝lnT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho (\mathrm {T})\propto {\ln }T$\end{document}, behaviors. The temperature dependence of conductivity of samples has a relation with the square root of temperature. These kinds of behaviors have been attributed to grains/clusters and disordering of samples.
引用
收藏
页码:1577 / 1584
页数:7
相关论文
共 207 条
  • [1] Prinz GA(1998)Advances in nanoscale magnetism. Springer Proceedings in Physics Science 282 1660-67
  • [2] Raphel MP(2002)J Phys. Rev. B 66 104429-undefined
  • [3] Ravel B(1971)J J. Phys. Chem. Solids 32 1221-undefined
  • [4] Huang Q(2000)Li, Gui-fang, Matsuda, Ken-ichi, Uemura Phys.: Cond. Mat 12 9153-undefined
  • [5] Willard MA(2005)undefined Phys. Rev B 71 094425-undefined
  • [6] Cheng SF(2008)undefined J. Phys.: Cond. Mat 20 045212-undefined
  • [7] Das BN(2005)undefined J. Magn. Magn. Matter 286 340-undefined
  • [8] Stroud RM(2000)undefined Appl. Phys. Lett 76 3280-undefined
  • [9] Bussmann KM(1996)undefined J. Magn. Magn. Mater 159 L1-undefined
  • [10] Claassen JH(1996)undefined Phys. Rev. B 54 9353-undefined