A study on pointwise approximation by double singular integral operators

被引:0
作者
Gumrah Uysal
Mine Menekse Yilmaz
Ertan Ibikli
机构
[1] Karabuk University,Department of Mathematics, Faculty of Science
[2] Gaziantep University,Department of Mathematics, Faculty of Arts and Science
[3] Ankara University,Department of Mathematics, Faculty of Science
来源
Journal of Inequalities and Applications | / 2015卷
关键词
-generalized Lebesgue point; radial kernel; rate of convergence; bimonotonicity; bounded bivariation; 41A35; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work we prove the pointwise convergence and the rate of pointwise convergence for a family of singular integral operators with radial kernel in two-dimensional setting in the following form: Lλ(f;x,y)=∬Df(t,s)Hλ(t−x,s−y)dtds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\lambda} ( f;x,y ) =\iint_{D}f ( t,s ) H_{\lambda} ( t-x,s-y ) \,dt\,ds$\end{document}, (x,y)∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( x,y ) \in D$\end{document}, where D=〈a,b〉×〈c,d〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D= \langle a,b \rangle\times \langle c,d \rangle$\end{document} is an arbitrary closed, semi-closed or open region in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{2}$\end{document} and λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda\in\Lambda$\end{document}, Λ is a set of non-negative numbers with accumulation point λ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{0}$\end{document}. Also we provide an example to justify the theoretical results.
引用
收藏
相关论文
共 38 条
  • [21] Yilmaz MM(2010)On pointwise convergence of linear integral operators with homogeneous kernel Int. J. Math. Anal. 4 undefined-undefined
  • [22] Serenbay SK(undefined)Approximation by multivariate generalized sampling Kantorovich operator in the setting of Orlicz spaces undefined undefined undefined-undefined
  • [23] Ibikli E(undefined)A unifying approach to convergence of linear sampling type operators in Orlicz spaces undefined undefined undefined-undefined
  • [24] Yilmaz MM(undefined)On convergence of singular integral operators depending on three parameters with radial kernels undefined undefined undefined-undefined
  • [25] Uysal G(undefined)undefined undefined undefined undefined-undefined
  • [26] Ibikli E(undefined)undefined undefined undefined undefined-undefined
  • [27] Angeloni L(undefined)undefined undefined undefined undefined-undefined
  • [28] Vinti G(undefined)undefined undefined undefined undefined-undefined
  • [29] Angeloni L(undefined)undefined undefined undefined undefined-undefined
  • [30] Vinti G(undefined)undefined undefined undefined undefined-undefined