A study on pointwise approximation by double singular integral operators

被引:0
作者
Gumrah Uysal
Mine Menekse Yilmaz
Ertan Ibikli
机构
[1] Karabuk University,Department of Mathematics, Faculty of Science
[2] Gaziantep University,Department of Mathematics, Faculty of Arts and Science
[3] Ankara University,Department of Mathematics, Faculty of Science
来源
Journal of Inequalities and Applications | / 2015卷
关键词
-generalized Lebesgue point; radial kernel; rate of convergence; bimonotonicity; bounded bivariation; 41A35; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work we prove the pointwise convergence and the rate of pointwise convergence for a family of singular integral operators with radial kernel in two-dimensional setting in the following form: Lλ(f;x,y)=∬Df(t,s)Hλ(t−x,s−y)dtds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\lambda} ( f;x,y ) =\iint_{D}f ( t,s ) H_{\lambda} ( t-x,s-y ) \,dt\,ds$\end{document}, (x,y)∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( x,y ) \in D$\end{document}, where D=〈a,b〉×〈c,d〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D= \langle a,b \rangle\times \langle c,d \rangle$\end{document} is an arbitrary closed, semi-closed or open region in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{2}$\end{document} and λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda\in\Lambda$\end{document}, Λ is a set of non-negative numbers with accumulation point λ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{0}$\end{document}. Also we provide an example to justify the theoretical results.
引用
收藏
相关论文
共 38 条
  • [1] Rydzewska B(1973)Approximation des fonctions par des intégrales singulières ordinaires Fasc. Math. 7 71-81
  • [2] Karsli H(2007)On convergence of convolution type singular integral operators depending on two parameters Fasc. Math. 38 25-39
  • [3] Ibikli E(2006)Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters Appl. Anal. 85 781-791
  • [4] Karsli H(2008)On the approximation properties of a class of convolution type nonlinear singular integral operators Georgian Math. J. 15 77-86
  • [5] Karsli H(2014)Fatou type convergence of nonlinear Appl. Math. Comput. 246 221-228
  • [6] Karsli H(1984)-singular integral operators Rend. Mat. 4 481-490
  • [7] Bardaro C(1984)On the degree of approximation for a class of singular integrals Atti Semin. Mat. Fis. Univ. Modena 33 329-356
  • [8] Gori Cocchieri C(2006)On approximation properties for some classes of linear operators of convolution type Int. J. Pure Appl. Math. 27 431-447
  • [9] Bardaro C(2011)Pointwise convergence theorems for nonlinear Mellin convolution operators Appl. Anal. 90 463-474
  • [10] Bardaro C(2013)Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems Commun. Appl. Nonlinear Anal. 20 25-39