Existence and comparison results for an elliptic equation involving the 1-Laplacian and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-data

被引:0
作者
Marta Latorre
Sergio Segura de León
机构
[1] Universitat de València,Departament d’Anàlisi Matemàtica
关键词
Nonlinear elliptic equations; -data; 1-Laplacian operator; Total variation term; Comparison principle; Inverse mean curvature flow; 35J75; 35J60; 35J25; 35J15;
D O I
10.1007/s00028-017-0388-0
中图分类号
学科分类号
摘要
This paper is devoted to analyze the Dirichlet problem for a nonlinear elliptic equation involving the 1-Laplacian and a total variation term, that is, the inhomogeneous case of the equation arising in the level set formulation of the inverse mean curvature flow. We study this problem in an open bounded set with Lipschitz boundary. We prove an existence result and a comparison principle for nonnegative L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-data. Moreover, we search the summability that the solution reaches when more regular Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-data, with 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document}, are considered and we give evidence that this summability is optimal. To prove these results, we apply the theory of L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-divergence measure fields which goes back to Anzellotti (Ann Mat Pura Appl (4) 135:293–318, 1983). The main difficulties of the proofs come from the absence of a definition for the pairing of a general L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-divergence measure field and the gradient of an unbounded BV-function.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 39 条
[1]  
Andreu F(2001)The Dirichlet problem for the total variation flow J. Funct. Anal. 180 347-403
[2]  
Ballester C(1983)Pairings between measures and bounded functions and compensated compactness Ann. Mat. Pura Appl. (4) 135 293-318
[3]  
Caselles V(1995)An Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 241-273
[4]  
Mazón JM(1996) theory of existence and uniqueness of solutions of nonlinear elliptic equations Ann. Inst. H. Poincaré (Non–Lineaire) 13 539-551
[5]  
Anzellotti G(2011)Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data J. Differential Equations 250 3311-3348
[6]  
Bénilan P(1999)On the entropy conditions for some flux limited diffusion equations Arch. Ration. Mech. Anal. 147 89-118
[7]  
Boccardo L(2003)Divergence-measure fields and hyperbolic conservation laws Asymptot. Anal. 35 27-40
[8]  
Gallouët T(1999)Asymptotic behaviour of solutions to Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 28 741-808
[9]  
Gariepy R(2001)-Laplacian equation J. Differential Geom. 59 353-438
[10]  
Pierre M(2008)Renormalized solutions of elliptic equations with general measure data J. Differential Geom. 80 433-451