Existence of solutions for a class of quasilinear Schrödinger equations on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{R}}$\end{document}

被引:0
作者
Da-Bin Wang
Kuo Yang
机构
[1] Lanzhou University of Technology,Department of Applied Mathematics
关键词
quasilinear Schrödinger equation; indefinite potential; variational method; 34J10; 35J20; 35J60;
D O I
10.1186/s13661-015-0486-2
中图分类号
学科分类号
摘要
In this paper, we study the existence of nontrivial solution for a class of quasilinear Schrödinger equations in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{R}}$\end{document} with the nonlinearity asymptotically linear and, furthermore, the potential indefinite in sign. The tool used in this paper is the direct variation method.
引用
收藏
相关论文
共 42 条
[1]  
Liu JQ(2002)Soliton solutions for quasilinear Schrödinger equations. I Proc. Am. Math. Soc. 131 441-448
[2]  
Wang ZQ(2012)Multibump solutions for quasilinear elliptic equations J. Funct. Anal. 262 4040-4102
[3]  
Liu JQ(2002)On the existence of soliton solutions to quasilinear Schrödinger equations Calc. Var. Partial Differ. Equ. 14 329-344
[4]  
Wang ZQ(2008)Non-autonomous perturbations for a class of quasilinear elliptic equations on J. Math. Anal. Appl. 344 186-203
[5]  
Guo YX(2003)Positive solutions to a class of quasilinear elliptic equations on Discrete Contin. Dyn. Syst. 9 55-68
[6]  
Poppenberg M(2005)Multiple nodal bound states for a quasilinear Schrödinger equations J. Math. Phys. 46 1784-1795
[7]  
Schmitt K(2011)On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on Math. Nachr. 284 213-226
[8]  
Wang ZQ(2004)Solutions for a quasilinear Schrödinger equations: a dual approach Nonlinear Anal. 56 3357-3372
[9]  
Alves MJ(2007)Soliton solutions for quasilinear Schrödinger equations: the critical exponential case Nonlinear Anal. 67 473-493
[10]  
Carrião PC(2003)Soliton solutions for quasilinear Schrödinger equations. II J. Differ. Equ. 187 879-901