A PSO-based multi-objective multi-label feature selection method in classification

被引:0
|
作者
Yong Zhang
Dun-wei Gong
Xiao-yan Sun
Yi-nan Guo
机构
[1] China University of Mining and Technology,School of Information and Electronic Engineering
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Feature selection is an important data preprocessing technique in multi-label classification. Although a large number of studies have been proposed to tackle feature selection problem, there are a few cases for multi-label data. This paper studies a multi-label feature selection algorithm using an improved multi-objective particle swarm optimization (PSO), with the purpose of searching for a Pareto set of non-dominated solutions (feature subsets). Two new operators are employed to improve the performance of the proposed PSO-based algorithm. One operator is adaptive uniform mutation with action range varying over time, which is used to extend the exploration capability of the swarm; another is a local learning strategy, which is designed to exploit the areas with sparse solutions in the search space. Moreover, the idea of the archive, and the crowding distance are applied to PSO for finding the Pareto set. Finally, experiments verify that the proposed algorithm is a useful approach of feature selection for multi-label classification problem.
引用
收藏
相关论文
共 50 条
  • [1] Multi-objective PSO based online feature selection for multi-label classification
    Paul, Dipanjyoti
    Jain, Anushree
    Saha, Sriparna
    Mathew, Jimson
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [2] A PSO-based multi-objective multilabel feature selection method in classification
    Zhang, Yong
    Gong, Dun-wei
    Sun, Xiao-yan
    Guo, Yi-nan
    SCIENTIFIC REPORTS, 2017, 7
  • [3] Multi-objective Optimisation-Based Feature Selection for Multi-label Classification
    Khan, Mohammed Arif
    Ekbal, Asif
    Mencia, Eneldo Loza
    Fuernkranz, Johannes
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 38 - 41
  • [4] An evolutionary decomposition-based multi-objective feature selection for multi-label classification
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Rahnamayan, Shahryar
    PEERJ COMPUTER SCIENCE, 2020, 2020 (03) : 1 - 32
  • [5] Online Feature Selection for Multi-label Classification in Multi-objective Optimization Framework
    Paul, Dipanjyoti
    Kumar, Rahul
    Saha, Sriparna
    Mathew, Jimson
    PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019), 2019, : 530 - 531
  • [6] A Multi-label Feature Selection Algorithm Based on Multi-objective Optimization
    Yin, Jing
    Tao, Tengfei
    Xu, Jianhua
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [7] A Multimodal Multi-Objective Evolutionary Algorithm for Filter Feature Selection in Multi-Label Classification
    Hancer E.
    Xue B.
    Zhang M.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (09): : 1 - 14
  • [8] A Multi-Objective Multi-Label Feature Selection Algorithm Based on Shapley Value
    Dong, Hongbin
    Sun, Jing
    Sun, Xiaohang
    ENTROPY, 2021, 23 (08)
  • [9] Multi-objective Evolutionary Instance Selection for Multi-label Classification
    Liu, Dingming
    Shang, Haopu
    Hong, Wenjing
    Qian, Chao
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 548 - 561
  • [10] Multi-Label Classification Based on Multi-Objective Optimization
    Shi, Chuan
    Kong, Xiangnan
    Fu, Di
    Yu, Philip S.
    Wu, Bin
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2014, 5 (02)