Investigation of the thermal decomposition kinetics of bezafibrate

被引:0
作者
Chang-shuai Shen
Cai-rong Zhou
机构
[1] Zhengzhou University,School of Chemical Engineering and Energy
来源
Journal of Thermal Analysis and Calorimetry | 2016年 / 126卷
关键词
Bezafibrate; Kinetics; Thermal decomposition; Thermodynamical analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The thermal decomposition kinetics of bezafibrate in a nitrogen atmosphere has been investigated by analyzer DTG-60. The thermal behavior of bezafibrate at the different heating rates 4, 8, 12, 16 and 20 °C min−1 displays two-stage decomposition processes among 500–650 K. The activation energy (E) and pre-exponential factor (A) were calculated to be 128.72 kJ mol−1 and 3.56 × 1010 min−1 by Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Doyle, Kissinger and Šatava–Šesták methods for the second-stage decomposition process. The results show that the non-isothermal thermal decomposition mechanism of bezafibrate is classified as three-dimensional diffusion model, and the integral and differential equations are g(α)=[1-(1-α)1/3]2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(\alpha ) = [1 - (1 - \alpha )^{1/3} ]^{2}$$\end{document} and f(α)=321-α231-1-α13-1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\alpha ) = \frac{3}{2}\left( {1 - \alpha } \right)^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} \left[ {1 - \left( {1 - \alpha } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} } \right]^{ - 1}{.}$$\end{document} The enthalpy (ΔH≠), entropy (ΔS≠) and Gibbs free energy (ΔG≠) were calculated to be 123.74 kJ mol−1, −91.07 J mol−1 K−1 and 178.29 kJ mol−1, respectively.
引用
收藏
页码:959 / 967
页数:8
相关论文
共 106 条
[1]  
Li G(2014)The development of research on synthesis of bezafibrate Guangzhou Chem Ind 42 29-30
[2]  
Wu J(2010)Improved synthesis of hypolipidemic drug bezafibrate Chin J New Drugs 19 311-312
[3]  
Gu X(2008)Study on synthesis of bezafibrate Liaoning Chem Ind 36 733-735
[4]  
Li D(2008)Improved synthesis of hypolipidemic drug bezafibrate Chin J Pharm 39 641-642
[5]  
Ding AZ(2011)Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome Eur J Pharm 662 1-8
[6]  
Dai XY(2006)Preparation and in vitro/in vivo evaluation of bezafibrate sustained-release pellet capsules J China Pharm Univ 37 419-422
[7]  
Chen YP(2010)The effect of bezafibrate on serum pro-inflammatory cytokine levels and blood pressure in hypertriglyceridemic and hypertensive patients Med J Chin People’s Liberation Army 30 216-218
[8]  
Wu J(2005)Bezafibrate stimulate endothelial cell growth and miration Henan Med Res 14 298-301
[9]  
Sasaki Y(2014)Should the beneficial impact of bezafibrate on fatty acid oxidation disorders be questioned? J Inherit Metab Dis 38 1-2
[10]  
Shimada T(2013)Bezafibrate maintenance therapy in patients with advanced chronic hepatitis C Eur J Gastroenterol Hepatol 25 594-600