The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization

被引:0
|
作者
Farouq Zitouni
Saad Harous
Abdelghani Belkeram
Lokman Elhakim Baba Hammou
机构
[1] Kasdi Merbah University,Department of Computer Science
[2] Abdelhamid Mehri University,LIRE Laboratory
[3] University of Sharjah,Department of Computer Science
来源
Arabian Journal for Science and Engineering | 2022年 / 47卷
关键词
Global optimization; Metaheuristic algorithms; Unconstrained optimization; Constrained optimization; Hunting behavior of archerfish; Benchmark CEC 2020;
D O I
暂无
中图分类号
学科分类号
摘要
Global optimization solves real-world problems numerically or analytically by minimizing their objective functions. Most of the analytical algorithms are greedy and computationally intractable (Gonzalez in Handbook of approximation algorithms and metaheuristics: contemporary and emerging applications, vol. 2. CRC Press, Boca Raton, 2018). Metaheuristics are generally nature-inspired optimization algorithms. They numerically find a near-optimal solution for optimization problems in a reasonable amount of time. We propose a novel metaheuristic algorithm for global optimization. It is based on the shooting and jumping behaviors of the archerfish for hunting aerial insects. We name our proposed algorithm the archerfish hunting optimizer (AHO). The AHO algorithm has two parameters (the swapping angle and the attractiveness rate) to set. We execute the AHO algorithm using five different values for each parameter. In all, we perform 25 simulations for four distinct values of the search space dimension (i.e., 5, 10, 15, and 20). We run the Friedman test to determine the best values of parameters for each dimension. We perform three different comparisons to validate the proposed algorithm’s performance. First, AHO is compared to 12 recent metaheuristic algorithms (the accepted algorithms for the 2020’s competition on single-objective bound-constrained numerical optimization) on ten test functions of the benchmark CEC 2020 for unconstrained optimization. The experimental results are evaluated using the Wilcoxon signed-rank test. Experimental outcomes show that the AHO algorithm, in terms of robustness, convergence, and quality of the obtained solution, is significantly competitive compared to state-of-the-art methods. Second, the performance of AHO and three recent metaheuristic algorithms is evaluated using five engineering design problems taken from the benchmark CEC 2020 for non-convex constrained optimization. The obtained results are ranked using the ranking scheme detailed in the corresponding paper, and the obtained ranks illustrate that AHO is very competitive when opposed to the considered algorithms. Finally, the performance of AHO in solving five engineering design problems is assessed and compared to several well-established state-of-the-art algorithms. We analyzed the obtained numerical results in detail. These results show that the AHO algorithm is significantly better than, or at least comparable to the considered algorithms with very efficient performance in solving many optimization problems. The statistical indicators illustrate that the AHO algorithm has a high ability to significantly outperform the well-established optimizers.
引用
收藏
页码:2513 / 2553
页数:40
相关论文
共 50 条
  • [41] Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
    Wang, Gai-Ge
    MEMETIC COMPUTING, 2018, 10 (02) : 151 - 164
  • [42] Particle guided metaheuristic algorithm for global optimization and feature selection problems
    Kwakye, Benjamin Danso
    Li, Yongjun
    Mohamed, Halima Habuba
    Baidoo, Evans
    Asenso, Theophilus Quachie
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248
  • [43] Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
    Zhang, Jinhao
    Xiao, Mi
    Gao, Liang
    Pan, Quanke
    APPLIED MATHEMATICAL MODELLING, 2018, 63 : 464 - 490
  • [44] Multidirectional Grey Wolf Optimizer Algorithm for Solving Global Optimization Problems
    Tawhid, Mohamed A.
    Ali, Ahmed F.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2018, 17 (04)
  • [45] Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
    Kaur, Satnam
    Awasthi, Lalit K.
    Sangal, A. L.
    Dhiman, Gaurav
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 90 (90)
  • [46] Cooperation search algorithm: A novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems
    Feng, Zhong-kai
    Niu, Wen-jing
    Liu, Shuai
    APPLIED SOFT COMPUTING, 2021, 98
  • [47] Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Zidan, Mahinda
    Jameel, Mohammed
    Abouhawwash, Mohamed
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415
  • [48] A novel chaotic selfish herd optimizer for global optimization and feature selection
    Anand, Priyanka
    Arora, Sankalap
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (02) : 1441 - 1486
  • [49] A novel chaotic selfish herd optimizer for global optimization and feature selection
    Priyanka Anand
    Sankalap Arora
    Artificial Intelligence Review, 2020, 53 : 1441 - 1486
  • [50] A novel quasi-oppositional chaotic antlion optimizer for global optimization
    Subhodip Saha
    V. Mukherjee
    Applied Intelligence, 2018, 48 : 2628 - 2660