共 77 条
[1]
Anshuka A(2022)Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model Stoch Environ Res Risk Assess 32 785-797
[2]
Chandra R(2018)Comparison between the indirect approach and kriging with samples of different support for estimation using samples of different length Stoch Environ Res Risk Assess 19 301-305
[3]
Buzacott AJV(2005)A Kriging-based approach for locating a sampling site—in the assessment of air quality Stoch Environ Res Risk Assess 36 1503-1519
[4]
Bassani MAA(2022)Multiscale investigation of precipitation extremes over Ethiopia and teleconnections to large-scale climate anomalies Stoch Environ Res Risk Assess 18 432-438
[5]
Costa JFCL(1982)On the relationship between kriging and state estimation Water Resour Res 26 89-106
[6]
Guaglianoni WC(2015)Bayesian hierarchical modeling of extreme hourly precipitation in Norway Environmetrics 53 343-367
[7]
Rubio RH(2003)The Ensemble Kalman Filter: theoretical formulation and practical implementation Ocean Dyn 54 539-560
[8]
Bayraktar H(2004)Sampling strategies and square root analysis schemes for the EnKF Ocean Dyn 35 2303-2312
[9]
Turalioglu FS(2021)Effects of estimation techniques on generalised extreme value distribution (GEVD) parameters and their spatio-temporal variations Stoch Environ Res Risk Assess 127 153-162
[10]
Beyene TK(2018)Localised kriging parameter optimisation based on absolute error minimisation Appl Earth Sci 28 1171-1186