Piecewise smooth extreme functions are piecewise linear

被引:0
作者
Marco Di Summa
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica “Tullio Levi
来源
Mathematical Programming | 2020年 / 179卷
关键词
Cutting plane theory; Infinite group relaxation; Minimal valid functions; Extreme valid functions; 90C10; 90C11;
D O I
暂无
中图分类号
学科分类号
摘要
The infinite relaxations in integer programming were introduced by Gomory and Johnson to provide a general framework for the theory of cutting planes: the so-called valid functions, and in particular the minimal and extreme functions, can be seen as automatic rules for the generation of cuts. However, while many extreme functions are piecewise linear and therefore easy to describe, the set of extreme functions turns out to have a very complicated mathematical structure, as several extreme functions are known that exhibit a somewhat pathological behavior. In this paper we show that if some smoothness assumption is imposed on an extreme function π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}, then π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} is necessarily piecewise linear. More precisely, we show that if a continuous extreme function for the Gomory–Johnson one-dimensional infinite group relaxation is a piecewise C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^2$$\end{document} function, then it is a piecewise linear function.
引用
收藏
页码:265 / 293
页数:28
相关论文
共 26 条
[1]  
Basu A(2012)A counterexample to a conjecture of Gomory and Johnson Math. Program. Ser. A 133 25-38
[2]  
Conforti M(2015)A geometric approach to cut-generating functions Math. Program. 151 153-189
[3]  
Cornuéjols G(2015)Equivariant perturbation in Gomory and Johnson’s infinite group problem. I. The one-dimensional case Math. Oper. Res. 40 105-129
[4]  
Zambelli G(2016)Light on the infinite group relaxation I: foundations and taxonomy 4OR 14 1-40
[5]  
Basu A(2016)Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms 4OR 14 1-25
[6]  
Conforti M(1969)Some polyhedra related to combinatorial problems Linear Algebra Appl. 2 451-558
[7]  
Di Summa M(1972)Some continuous functions related to corner polyhedra, I Math. Program. 3 23-85
[8]  
Basu A(1972)Some continuous functions related to corner polyhedra, II Math. Program. 3 359-389
[9]  
Hildebrand R(2003)T-space and cutting planes Math. Program. 96 341-375
[10]  
Köppe M(2015)An electronic compendium of extreme functions for the Gomory–Johnson infinite group problem Oper. Res. Lett. 43 438-444