The four-loop remainder function and multi-Regge behavior at NNLLA in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super-Yang-Mills theory

被引:0
作者
Lance J. Dixon
James M. Drummond
Claude Duhr
Jeffrey Pennington
机构
[1] Stanford University,SLAC National Accelerator Laboratory
[2] CERN,School of Physics and Astronomy
[3] University of Southampton,Institute for Particle Physics Phenomenology
[4] LAPTH,undefined
[5] CNRS et Université de Savoie,undefined
[6] University of Durham,undefined
关键词
Scattering Amplitudes; Wilson; ’t Hooft and Polyakov loops; Extended Supersymmetry;
D O I
10.1007/JHEP06(2014)116
中图分类号
学科分类号
摘要
We present the four-loop remainder function for six-gluon scattering with maximal helicity violation in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super-Yang-Mills theory, as an analytic function of three dual-conformal cross ratios. The function is constructed entirely from its analytic properties, without ever inspecting any multi-loop integrand. We employ the same approach used at three loops, writing an ansatz in terms of hexagon functions, and fixing coefficients in the ansatz using the multi-Regge limit and the operator product expansion in the near-collinear limit. We express the result in terms of multiple polylogarithms, and in terms of the coproduct for the associated Hopf algebra. From the remainder function, we extract the BFKL eigenvalue at next-to-next-to-leading logarithmic accuracy (NNLLA), and the impact factor at N3LLA. We plot the remainder function along various lines and on one surface, studying ratios of successive loop orders. As seen previously through three loops, these ratios are surprisingly constant over large regions in the space of cross ratios, and they are not far from the value expected at asymptotically large orders of perturbation theory.
引用
收藏
相关论文
共 210 条
  • [1] Drummond JM(2007)Magic identities for conformal four-point integrals JHEP 01 064-undefined
  • [2] Henn J(2007)The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory Phys. Rev. D 75 085010-undefined
  • [3] Smirnov VA(2007)Maximally supersymmetric planar Yang-Mills amplitudes at five loops Phys. Rev. D 76 125020-undefined
  • [4] Sokatchev E(2007)Gluon scattering amplitudes at strong coupling JHEP 06 064-undefined
  • [5] Bern Z(2008)Conformal properties of four-gluon planar amplitudes and Wilson loops Nucl. Phys. B 795 385-undefined
  • [6] Czakon M(2008)MHV amplitudes in N = 4 super Yang-Mills and Wilson loops Nucl. Phys. B 794 231-undefined
  • [7] Dixon LJ(2008)On planar gluon amplitudes/Wilson loops duality Nucl. Phys. B 795 52-undefined
  • [8] Kosower DA(2010)Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes Nucl. Phys. B 826 337-undefined
  • [9] Smirnov VA(2005)Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond Phys. Rev. D 72 085001-undefined
  • [10] Bern Z(2008)The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory Phys. Rev. D 78 045007-undefined